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Summary 

The purpose of this paper is to provide a critical survey of the literature, directed at answering 
two main questions. i) Can the use of the sampling weights be justified for analytic inference about 
model parameters and if so, under what circumstances? ii) Can guidelines be developed for how to 
incorporate the weights in the analysis? The general conclusion of this study is that the weights can 
be used to test and protect against informative sampling designs and against misspecification of the 
model holding in the population. Six approaches for incorporating the weights in the inference 
process are considered. The first four approaches are intended to yield design consistent estimators 
for corresponding descriptive population quantities of the model parameters. The other two 
approaches attempt to incorporate the weights into the model. 

Key words: Design consistency; Estimating functions; Nonignorable sampling design; Pseudo 
likelihood; Randomization distribution; Weighted distribution. 

1 Introduction 

Sampling weights weigh sample data to correct for the disproportionality of the sample 
with respect to the target population of interest. The weights reflect unequal sample 
inclusion probabilities and compensate for differential nonresponse and frame under- 
coverage. They are routinely included in survey data files released to analysts. The role of 
the sampling weights in the statistical analysis of survey data is however a subject of 
controversy among theorists. For descriptive inference, that is, inference about known 
functions of the finite population values, weighting of sample data is widely accepted 
although modifications to control variances are occasionally recommended. Yet, for 
analytical inference about model parameters, there is a wide spectrum of opinions on the 
role of the sampling weights, from modelers who view the weights as largely irrelevant to 
survey statisticians who incorporate the weights into every analysis. 

In order to illustrate the controversy, consider the second National Health and 
Nutrition Examination Survey (NHANES) in the US (McDowell et al., 1981). The 
NHANES consists of a stratified four stage probability cluster sample of households. The 
primary sampling units (PSU's) are counties or groups of contiguous counties and the 
stratification is based on size, income and racial distribution. The selection of the PSU's 
and the three stage selection of persons within the PSU's is with unequal probabilities so 
as to oversample the poor, the young and the old age groups. Let ,7i = P(i E s) define the 
sample inclusion probability for person i, i = 1. . . N. The probabilities tir are products of 
the conditional selection probabilities at the various sampling stages. Let Y define a 
variable of interest with typical values Yi, i = 1 ... N. For estimating the population mean 
M = SiN,l Yi/N for example, classical sampling theory advocates the use of estimators like, 

E (Yi i)IN, E 
(YiSi)/l (/ri), [ ( 7i)/ (Xi7i)]E (xiIN) 

ieS ieS ieS ieS ieS i=1 
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and so forth where in the last estimator x is a concomitant variable known for all the 

population units. The attractive feature of these estimators is that they are unbiased, or 
approximately unbiased with respect to the randomization distribution, induced by the 
random selection of the sample, irrespective of the distribution of the Y-values in the 
population. 

Suppose now that one is interested in regressing the Y values against a given set of 
regressor variables. For example, Harlan et al. (1985) fit regression models to the 
NHANES data with diastolic blood pressure as the dependent variable and blood lead 
levels, age and other health variables as the independent variables. The question which 
arises is whether the sampling weights should play a role when estimating the model 
parameters. For example, one could estimate the regression coefficients as 

w (XS WX)-1Xs , = E w:xix) wiiYi (1.1) 
ieS ieS 

where wi = 1/7ri, xi is the vector of regressor values for unit i, s = {1... n} represents the 
sample, W, = diag (wl. .. w), X, = [xl... x,]' and Y, = (y,... y,)'. Clearly, the use of 
(1.1) cannot be justified in general based on optimality considerations. 

The purpose of this article is to provide a critical survey of the literature, aimed at 
answering the following two main questions: 

(1) Can the use of the sampling weights be justified for a model based inference and 
if so, under what circumstances? 

(2) Can guidelines be developed for how to use the weights? 

Put together, the two questions can be phrased as 'weighting: why, when and how?', 
the title of a talk by Kish (1990) which focuses on the use of the weights in descriptive 
analysis. The main conclusion of this study is that the sampling weights can play a vital 
role in two different aspects of the modeling process. 

(1) The weights can be used to test and protect against nonignorable sampling 
designs which could cause selection bias. 

(2) The weights can be used to protect against misspecification of the model holding 
in the population. 

The robustness of inference procedures that incorporate the weights is obtained by 
changing the focus of the inference to finite population quantities. We discuss alternative 
definitions of the target parameters in Section 2. Section 3 discusses the conditions 
ensuring the ignorability of the design and in Section 4 we show how to use the weights to 
test that the design is ignorable with respect to a given model. Section 5 illustrates how 
the use of the sampling weights can protect against nonignorable designs and misspecified 
models. In Section 6 we show examples where the use of the weights is either the only 
possible inference tool or the optimal tool. Section 7 discusses different approaches of 
incorporating the weights. We conclude the article with a brief summary in Section 8. 

An important aspect of the weighting issue not addressed in this article is the 
construction of the weights. Throughout this article we assume that the weights represent 
the inverse of the sample inclusion probabilities. Recent articles considering the 
construction of the sampling weights with rich lists of references to earlier studies are Cox 
(1987) and Kish (1990). 

Much of the discussion of this article relies on the theoretical and empirical results 
included in the book The Analysis of Complex Surveys edited by C. Skinner, D. Holt & 
T.M.F. Smith (1989). This pioneering book covers a large variety of inference methods 
applicable to complex survey data. We use the abbreviation 'SHS' when referring to this 
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book. Another rich source to the present discussion is the book Panel Surveys edited by 
D. Kasprzyk, G. Duncan, G. Kalton & M. P. Singh (1989). We use the abbreviation 
'KDKS' for that book. 

2 Definition of the Target Population and Parameters 

In descriptive inference, the target population consists of all the units in the population 
from which the sample is drawn. The target parameters are some known functions of the 
survey variables values like means, proportions, regression coefficients etc. In what 
follows we refer to such functions as 'descriptive population quantities' (DPQ). All other 
inferences are 'analytic' but the term usually refers to inference about model parameters 
like expected values, variances, regression coefficients or cell probabilities. Classical 
inference methods attempt to infer about these parameters in the form of point 
estimators, confidence intervals, or posterior distributions. What happens when modeling 
survey data? Are the parameters of interest different? More specific to our discussion. 

Is there any role for descriptive population quantities in analytic inference from 
sample surveys? 

Positions expressed in the literature on this question range from those who see no role 
for DPQ's in analytic inference to those maintaining that inference should focus on only 
the DPQ's. A third position which, in some way, compromises between the other two 
considers the model parameters as the ultimate target parameters but in the same time 
focuses also on the DPQ's as a way to secure the robustness of the inference. 

The first position represents the approach that models are used in order to draw 
inference on populations more general than the fixed finite population giving rise to the 
sample. See for example Hoem (KDKS, p. 540) and Fienberg (KDKS, p. 570). The 
second position reflects the concern of survey statisticians that with the heterogeneous 
populations encountered in practice and the complex designs used to select the sample, 
the fitting of models that closely approximate the behaviour of the population values is 
not practical. Hence, they recommend replacing the hypothetical model parameters by 
simple DPQ's which are interpretable and can be used to explain the relationships 
between the survey variables in a more robust way. See for example Kish & Frankel 
(1974), Jonrup & Rennermalm (1976) and Shah, Holt & Folsom (1977). 

In order to illustrate the difference between the two approaches, consider the fitting of 
a regression model to data arising from a cluster sample. Population clusters are usually 
homogeneous groups with large differences between the clusters and so an analyst 
following the first approach would possibly allow for different regression equations to 
operate in different clusters in his model. When the number of observations in each 
cluster is small, he will have to model also the relationships between the regression 
coefficients operating in different clusters (see for example Pfeffermann & Lavange, SHS, 
Ch. 12). Alternatively, he may postulate a single regression line but allow for intracluster 
correlations between residual terms pertaining to the same cluster (Scott & Holt, 1982). 
Once the model is defined, the analyst will estimate the unknown model parameters using 
maximum likelihood, Bayesian, or some other optimal strategies. See Pfeffermann & 
Smith (1985) for a review and discussion of such models. 

The analyst following the second approach is likely to define the target quantity as the 
least squares solution in the case of a census, that is, the DPQ 

N -1 N 

B = (X'X)-X'Y = ( xi x) E x,y, (2.1) 
'==l / i=1 
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where X = [xl. . . xN]' and estimate B using for example the estimator .fL defined in (1.1). 
As discussed below, the DPQ B has a clear and meaningful interpretation even if the 
model fails to hold. Notice that the two analysts will differ also in the estimators they use 
for the variances of the estimated regression coefficients. Thus, the first analyst will 
attempt to estimate the variance under the model whereas the second analyst will attempt 
to estimate the variance under the randomization distribution, that is, over all possible 
samples from the finite population. For further discussion on the alternative approaches 
to regression analysis of survey data see Brewer & Mellor (1973), Dumouchel & Duncan 
(1983), Fuller (1975, 1984), Little (1989), Pfeffermann & Smith (1985) and Skinner (SHS, 
ch. 3). 

Before describing the third approach to analytic inference from survey data we discuss 
the notions of 'corresponding descriptive population quantity' (CDPQ) and 'design 
consistency' (DC) which form the basis to this approach. 

Definition 1. Let Y' = (Yi... YN) be generated from a distribution indexed by a vector 
O of unknown parameters. Let U(Y, 0) = 0 define a set of estimating equations for 0 
obtained by an estimation rule R(Y- 0). The solution T(Y) such that U[Y, T(Y)] = 0 is 
the CDPQ for 0 under the rule R(Y- 0). 

The estimating equations can result from the minimization of a particular loss function, 
(or a Bayesian risk function) or coincide with the likelihood equations. For example, in 
the linear model Yi = a + x,i + ei where E (ei) = 0, E (E2) = a2x,, E (eEj) = 0 for i ij, 
the CDPQ of (a, f3) in the case of maximum likelihood inference is the solution to the 
likelihood equations (X'V1-X) (a, 1)' - X'V-'Y = 0 where X = [1N, X], X' = (X1... XN) 
and V = diag (x). The CDPQ of (c, 1) under the estimation rule 

N 

R[(Y-- (a, )] = min (YI - a - xi)2 
a, i= 

is (A, B) defined as, 
N N 

A=Y-BX, B = (x,- X)Y X (x- X)2 (2.2) 
i=1 i=1 

where (Y, X) = SiN (Yi, xi)/N. The estimating equations are in this case the familiar 
normal equations (X'X) (c,, 1)' - X'Y = 0. The definition of the CDPQ given above is 
similar in essence to the definitions given in Binder (1983), Godambe & Thompson 
(1986), Scott & Wild (SHS, ch. 9) and Skinner (SHS, ch. 3). 

We now turn to the notion of design consistency. In classical theory of statistics, 
consistency refers to the limiting behaviour of a sample statistic as the sample size is 
increased to infinity. Thus, defining the concept of consistency in finite population 
sampling requires that the population size will also be allowed to increase. This raises the 
question, however, of a suitable formulation of the manner by which the population and 
the sample increase such that their structure is preserved. For example, Isaki & Fuller 
(1982) propose a formulation which consists of constructing nested populations and 
sampling from each population increasing each time the sample size. The following 
definition assumes that the manner by which the population and the sample size increase 
is well defined. 

Definition 2. A sample statistic ts(n) is said to be design consistent for a DPQ T(N) if 
plim,,,_,N_. [ts(n)- T(N)] = 0 where 'plim' stands for 'limit in probability' under the 
randomization distribution, n is the sample size and N is the population size. 
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Using Definitions 1 and 2, the third approach to analytic inference from sample surveys 
can be described as follows: A model is postulated as in the first approach and inference is 
directed at the model parameters. However, rather than seeking an optimal estimator 
under the model, the analyst seeks an estimator from the class of estimators which are 
DC for the CDPQ. 

Why will an analyst restrict to DC estimators? The answer is robustness. If the model 
holds in the population and the estimation rule he uses yields a CDPQ which is consistent 
under the model, then as the population size increases the CDPQ will converge to the 
model parameter. Thus, any DC estimator of the CDPQ will be consistent for the model 
parameter under the mixed Dd distribution. On the other hand, if the model fails to hold, 
the model parameter and its optimal estimator under the model may no longer have a 
meaningful substantive interpretation. The CDPQ, on the other hand, is a real entity with 
a clear interpretation that continues to exist irrespective of the validity of the model. For 
example, the coefficients A and B in (2.2) define the best linear approximation to the 
Y-values in the finite population with respect to the least squares distance function. 
Moreover, assuming that the population values can be viewed as a random sample from 
the joint l distribution of (Y, X), the DPQ (A, B) are r consistent for the coefficients 
(a, ft) in the linear regression of Y on of oX. 

The consistency of DC estimators of the CDPQ as estimators of the model parameters 
can be established formally by writing 

t - 0 = (ts - T) + (T - ) = Op(n- ) + Op(N-) = Op(n-) (2.3) 

where the probability measure Op(n-s) applies to the randomization distribution and the 
probability measure Op(N-a) to the m distribution. Moreover, we may decompose the 
variance of ts around 0 as 

VarD0(ts) = E[VarD(tS I Y)] + Var[ED(tS I Y)] = E[VarD(tS | Y)] + O(N-1) (2.4) 

Thus, in the usual case where the population is much larger than the sample, the variance 
of ts under the Dd distribution is approximately the same as the t expectation of the 
randomization variance and it can be estimated therefore by estimating the randomization 
variance. Isaki & Fuller (1982) use the term 'anticipated variance' for the Dt variance in 
(2.4). 

3 Ignorable and Informative Sampling Designs 

3.1 Illustration of the Problem 

When the sample is selected by simple random sampling, the model holding for the 
sample data is the same as the model holding in the population before sampling. With the 
complex sampling designs often used in practice, the two models can be very different 
however and failure to account for the sample selection process might bias the inference. 
As already mentioned in Section 2 and illustrated in Section 5, incorporating the sampling 
weights in the analysis is one way of dealing with the effects of the design. 

In order to illustrate the problem, suppose that the population is made up of N units 
and that with every unit i is associated a vector (yi, zi) of measurements where (Yi, zi) are 
independent draws from a bivariate normal distribution with mean i and V - C matrix S. 
Suppose further that the values {(yi, zi), i = 1, . . ., n} are observed for a sample s of n 
units selected by a probability sampling scheme and that it is desirable to estimate 

y= Eg(Y). If the sample is selected by simple random sampling with replacement, 
Ys = i' 1iy,/n is unbiased for y, under the model and it carries other optimal properties. 
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Clearly, the sample selection scheme can be ignored in this case in the inference process. 
Consider, however, the case where the sample is selected with probabilities proportional 
to zi, with replacement, such that at each draw k = 1,... , n, P(i Es) = (zlEiN= zi). If 
Corr (Y, Z) = OyZ/OyO( > 0, P(Y' > Uy I i e s) > 2 so that the distribution of the y-values in 
the sample is different in this case from the distribution in the population and in 
particular, Ee(Ys)> >y. Clearly, ignoring the sampling scheme and estimating my by Ys 
can be very misleading in this case. Suppose, however, that the values zi are known for all 
the population units. An unbiased (maximum likelihood) estimator of ,y is in this case the 
regression estimator Y,cg= Ys + b(Z- Zs) where b is the ordinary least squares (OLS) 
estimator of the regression coefficient (aOy/o2) and Z(Zs) is the population (sample) 
mean of Z. Thus, by utilizing all the population values zi in the inference, the sampling 
design becomes ignorable. 

In the next section we define the ignorability conditions more formally. In Section 4 we 
discuss the use of the sampling weights for testing the fulfillment of these conditions. 

3.2 Definition and Conditions for the Ignorability of the Sampling Design 
The definition of ignorability and the conditions under which the design is ignorable are 

widely discussed in the literature, see e.g., Little (1982), Rubin (1976), Scott (1977) and 
Sugden & Smith (1984), so we only sketch the main results. 

Let z; = (zi ... Zik) represent the values of k design variables associated with unit i E U 
and denote Z = (zI... ZN)'. The design variables may include strata indicator variables 
and quantitative variables measuring cluster and unit characteristics. Let I' = (I. .. IN 1) be 
a sample indicator variable such that Ii = 1 for i E s and 1, = O0 otherwise. We denote the 
survey response variables values by Yi and let Y = (Ys, Ys) where Ys = {Yi, i E s} and 
Ys = {Yi, i O s}. In general, the sample selection scheme depends on the design variables 
and may also depend on the response variables. Thus, P(s) = P(I I Y, Z; q) where (p is a 
vector parameter. Let f(Y Z; 01) denote the conditional probability density function 
(pdf) of Y given Z, indexed by the vector parameter 01. The marginal pdf of Z will be 
denoted by g(Z; 4). 

The joint distribution of Y and Z in the population is 

f(Y, Z; 0, ) =f(Y | Z; 01)g(Z; .) (3.1) 
where 0 and ( are assumed to be distinct parameters (Rubin, 1976). In analytic inference, 
the target parameters are 01, or functions of 01 and + such as the parameters of the 
marginal distribution of Y. 

Suppose that the design variables are known for every unit in the population and that 
the response variables are observed for only the units in the sample. The joint distribution 
of Ys, Z and I is obtained by integrating the joint distribution of Y, Z and I over Ys, 

f(Ys, I, Z; 0, +, () = ff(Ys, Ys Z; 01)g(Z; 4)P(I I Ys, YS, Z; p) dYg (3.2) 

Ignoring the sampling design in the inference process implies that the inference is based 
on the joint distribution of Ys and Z obtained by integrating (3.1) over Yg, ignoring 
P(II Y,YS,Z; ), 

f(Ys, Z; 0, q) = f( Ys, Y| Z; i0)g(Z; q) dYg (3.3) 

Definition 3. The sampling design is ignorable given the set of design variables if 
inference based on (3.2) (the joint distribution of all the data known to the analyst) is 
equivalent to inference based on (3.3). 
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It is important to note that the ignorability of the design refers to the information 
provided by the selection scheme beyond what is already provided by the design 
variables. The exact conditions under which the use of (3.2) and (3.3) yields similar 
inferences are defined and illustrated in the fundamental article by Rubin (1976). The 
ignorability conditions are clearly satisfied in sampling schemes that depend only on the 
design variables since in this case P(I | Ys, Ys, Z; q) = P(I | Z; O). See Little (1982) and 
Smith (1984) for the implications of this property. Sugden & Smith (1984) explore the 
conditions under which a sampling scheme which depends only on the design variables in 
Z is ignorable, given partial information on the design. The authors define the set ds = 
Ds(Z = z) to include all the available design information from knowledge of the selection 
scheme, the sample selection probabilities and any known values or functions of Z. The 
key condition for ignorability of the sampling scheme given the design information is that 
P(s Z = z) = P(s Ds = ds) for all z such that Ds(z) = ds which implies that 
f(Ys I Ds, I)=f(Ys I Ds). 

The results quoted so far are formulated in terms of the joint distribution of Ys and Z 
but they can be translated to the case where the reference model specifies the conditional 
distribution of some of the response variables given another set of survey variables. Thus, 
the sampling design is ignorable for estimating the regression of Y on X if 

f(Ys I Xs, Ds, I) =f(Ys I Xs, Ds). (3.4) 

If, in addition, f(Ys I Xs, Ds) =f(Ys I Xs) the design information entailed in Ds can 
likewise be ignored and classical regression analysis applies. 

The distinction between conditional and unconditional inference highlights another 
important aspect of the ignorability problem namely, that the ignorability of the sampling 
design depends not only on the design and the available design information but also on 
the model and the parameters of interest. Thus, if the regressor variables in a regression 
model include all the design variables, the sampling design is ignorable for estimating the 
regression model. If, however, the design variables values are only known for units in the 
sample, the sampling design is not ignorable for estimating the unconditional mean and 
variance of the regression dependent variables. 

4 The Role of the Sampling Weights in Testing the Ignorability Conditions 

4.1 The Effects of Ignoring Informative Designs 

As the discussion of the previous section suggests, satisfying the ignorability conditions 
can be a complicated matter particularly with complex multistage sampling designs which 
depend on the values of several design variables. The effects of ignoring the sample 
selection process when fitting models to survey data are studied extensively in SHS (1989) 
with the clearcut conclusion that failure to account for all the important design variables 
or incorrectly specifying the conditional distribution of the survey variables given the 
design information can have severe effects on the inference process. These effects include 
bias of point estimators and poor performance of test statistics and confidence intervals. 
The study covers a large number of statistical techniques such as regression analysis, 
categorical data analysis, logistic regression and principal components analysis. The SHS 
book contains references to other similar studies. Below we mention briefly two 
examples. 

Example 4.1 Estimation of regression models. DeMets & Halperin (1977) and Nathan 
& Holt (1980) study the properties of OLS estimators when the selection to the sample is 
based on the values of a design variable Z which is correlated with the dependent variable 
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Y. Hausman & Wise (1981) and Jewell (1985), consider situations where the selection 
probabilities depend on the Y-values directly. These studies indicate that the OLS 
estimators of the regression coefficients which ignore the design altogether can be severely 
biased, with no real interpretation to the expected values of the estimators under the 
mixed, D~ distribution. 

Example 4.2 Estimation of logistic regression models. The effect of ignoring the 
sampling design when estimating logistic regression models is studied empirically by 
Chambless & Boyle (1985). The authors use data from the lipid research clinics 
program prevalence study (LRCPPS). The LRCPPS uses a disproportionate stratified 
random sample with the strata defined by race and lipid zone. The dependent variable in 
the analysis is again defined by the lipid zone levels. The authors find that when the 
logistic model is estimated ignoring the design, (that is, assuming simple random 
sampling), the estimate of the intercept term has a large bias which has a deteriorating 
effect on the estimated prevalence probabilities. The estimates of the prevalence 
probabilities remain biased even when extending the model by including the strata 
indicators as additional covariates. 

Scott & Wild (1986, SHS ch. 9) show that the effect of ignoring the design and using 
maximum likelihood estimation (m.l.e.) is to bias the estimate of the intercept but as long 
as the logistic regression model holds in the population, the estimates of the slope 
coefficients remain m.l.e. These results validate the empirical results of Chambless & 
Boyle (1985). 

4.2 Testing the Ignorability Conditions 

In practice, it is often the case that not all the relevant design variables are known for 
all the population units or that there are too many of them to be incorporated in the 
analysis. Not incorporating all the design variables in the model does not necessarily 
imply that the inference is biased and as the work of Sugden & Smith (1984) indicates, 
incorporating only partial design information in the model can be sufficient. 

A natural question arising from this discussion is how to test that the design can indeed 
be ignored, given the available design information. In principle, when all the design 
features are known, one could verify the fulfillment of the ignorability conditions directly. 
Frequently, however, the statistician analyzing the data has only limited knowledge about 
the actual sampling process. It is here where the sampling weights come into play. 

Very few studies are reported in the literature on this important aspect of the modeling 
process. Test statistics proposed in the literature are mostly in the area of regression 
analysis and they share a common feature. The ignorability of the design is tested by 
testing the significance of the difference between the best (optimal) estimator of the 
vector of regression coefficients under a particular working model which assumes that the 
design is ignorable and the weighted least squares estimator [w defined by (1.1). Denoting 
by p the optimal estimator of [ under the model, the hypothesis tested is 
H0: plimn,o,N,-o( - ,w) = 0 where 'plim' stands as before for the limit in probability 
under the mixed D~ distribution. The test statistic is 

X= D'[V(D)]- D (4.1) 
where D = - W, and V(D) is an estimator of the V - C matrix of D. Dumouchel & 
Duncan (1983) illustrate that the test statistic in (4.1) can be constructed by augmenting 
the original design matrix Xs by the columns Wsxj, j = 1,... ,p where Ws = 
diag (w, . . ., wn), and fitting the unweighted regression Ys = Xs4 + WsXst. Testing Ho 
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is equivalent then to testing H,: = 0. Assuming the regression model to hold, the 
ordinary regression test statistic has an F distribution with p and (n - 2p) degrees of 
freedom under H,. Nordberg (1989) extends the test statistic proposed by Dumouchel & 
Duncan to the Generalized Linear Model (GLM). 

Fuller (1984) considers the case of a cluster sample within strata and estimates the 
V - C matrix V(D) by estimating the corresponding randomization V- C matrix (see 
equation (2.4)). The resulting test statistic has an approximate F distribution under H( 
with p and (n - 2p - L) degrees of freedom where L is the number of strata. The use of 
the randomization distribution for estimating V(D) is more robust since it does not 
depend on the fulfillment of the regression model assumptions. 

The rationale of the test statistic , in (4.1) is clear. The estimator 1, is design consistent 
for the DPQ B defined by (2.1), and so if the regression model holds in the population, 
plimn,,oo,N-oo( )= P. When the ignorability conditions are satisfied, p is likewise 
consistent for P. If, however, the sampling design is not ignorable, 1 is no longer 
consistent for P and the two estimators converge to different limits. Notice that the two 
estimators will possibly converge to different limits also when the model holding in the 

population is wrongly specified. Thus, convergence to the same limit is sufficient but not 

necessary for ignoring the design. 
The use of X for testing the ignorability of the design suggests an important role for the 

sampling weights in the modeling process. They can be used to construct pivotal statistics 
for testing the ignorability of the design. In fact, Dumouchel & Duncan (1983) and 

Nordberg (1989) illustrate how an examination of the significant differences between the 
components of I and Iw can lead to the identification of important design variables or 
interactions between some of the design variables which, when added to the model, make 
the sampling design become ignorable. Chambless & Boyle (1985) make similar 
comments. See also Fuller (1984), and Pfeffermann & Smith (1985) for further discussion 
and applications of the test statistic B. 

Can a test statistic of the form (4.1) be constructed for different models and estimators? 
The answer is positive and relies on the following general result taken from Hausman 
(1978). 

Lemma. Let 60 and 01 be two consistent estimators of a vector parameter 0 which are 
asymptotically normal with 60 attaining the asymptotic Cramer-Rao bound. Thus, 
V(0(o- 0)AN(0, Vo), /n(? - 0)AN(O, Vl) where V( is the inverse of Fisher's information 
matrix. Let A = 61 - 00. Then, the limiting distributions of Vn(0 - 0) and VnA have zero 
covariance, C(0o, A) = 0 and hence in the limit 

V(0, - 0) = V(0,) - V(0o) ) o (4.2) 

in the sense of being nonnegative definite. 

Hausman (1978) uses the result (4.2) to construct model misspecification tests. We 
follow similar arguments to construct test statistics for testing the ignorability of the 
design. Let 00 define the efficient maximum likelihood estimator of 0 under a given model 
assuming that the design is ignorable. Let 6 be the CDPQ of 0 defined as the solution of 
the census likelihood equations and denote by O, the design consistent estimator of 0. 
Then, by Lemma 1, if the sampling design is ignorable and 0w is asymptotically normal, 

(w - 0o) '[(0) - (0o)]-'(0 - 0)Axp) (4.3) 
where p = dim (0). The V - C matrices V(.,) and V(00) can be obtained by estimating 
the corresponding randomization V - C matrices. 
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The test statistic in (4.3) is quite general but notice that besides the usual risk of a type 
II error, retaining the null hypothesis is not sufficient to ensure that the sampling design 
can be ignored for other facets of the inference process like, for example, probabilistic 
statements. Simple residual plots of model residuals against known design variables 
and/or against the sample selection probabilities at the various stages of the sampling 
process can be useful for further assessments of the ignorability of the design. 
Pfeffermann & Smith (1985) use partial residual plots of the regression residuals against a 
size variable used for determining the sample inclusion probabilities. Pfeffermann & 
Nathan (1985) propose simple test statistics based on cross validation techniques. The 
development of ingenious residual plots and test statistics for assessing the ignorability of 
the sampling design is an important area for future research. 

5 The Use of the Sampling Weights to Protect Against Informative Designs and 
Misspecified Models 

5.1 Difficulties in Modeling Survey Data 

As implied by the discussion of Section 4.2, testing the ignorability of the sampling 
design is often a complicated matter. Even when test statistics can be constructed, their 
use may not be conclusive or that they may indicate that the ignorability conditions are 
not fully satisfied. There seems to be a consensus, even among theorists who otherwise 
oppose the use of sampling weights in a modeling context that the sampling weights can 
play a vital role in situations where the ignorability of the sampling design is at stake. The 
following is a quotation from Fienberg (KDKS, p. 571)-'The one exception in which the 
use of weights may be appropriate is outcome-based sampling where the sampling plan 
may be informative for the model of interest. . .' See also Hoem (KDKS, p. 541). Notice 
also that even if all the relevant design variables are known, incorporating them in the 
model may become a major undertaking. As argued by Alexander (1987)-'no model will 
include all the relevant variables and few analysts will wish to include in the model all the 
geographic and operational variables which determine sampling rates. The theoretical and 
empirical tasks of deriving, fitting and validating such models seem formidable for many 
complex national demographic surveys'. 

How can the sampling weights be used to protect against informative designs and the 
possibility of model misspecifications? The idea has already been established in Section 2. 
Estimators of model parameters are modified so that they are design consistent for the 
CDPQ in the finite population from which the sample has been drawn. Probability 
statements are based on the randomization distribution of sample statistics or on the 
mixed D5 distribution. Notice from equation (2.4) that for sufficiently large populations, 
the variance of sample statistics with respect to the D5 distribution can be approximated 
by the corresponding randomization variance. With the large samples often used in 
practice, the distribution of the survey estimators is approximately normal. See Binder 
(1983), Chambless & Boyle (1985) and Fuller (1975, 1984) for central limit theorems 
applicable to complex sample surveys. 

Example 5.1 Estimation of regression models. In Sections 2 and 4.1 we considered the 
case of regression analysis. Focusing on the CDPQ, B, defined by (2.1) and seeking a DC 
estimator for B gives rise to estimators of the form jw defined by (1.1). The estimator OW 
is obtained as the solution to the linear equations 

U(Ys, Xs P) = wixi(xi' - i) = 0. (5.1) 
iES 
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For fixed vectors , ED[U(YS, XS, )] = Ei 1 xi(x;p - y,) = U(Y, X, P) where U(Y, X, P) 
are the normal equations in the case of a census, yielding the CDPQ B. Binder (1983) 
proposes a general method for estimating the randomization variances of estimators 
obtained by solving equations of the form (5.1). A notable feature of his method is that 
the estimators need not have explicit expressions, like for example in the case of GLM. 

Example 5.2 Fitting logistic models. The logistic model with a dichotomous response 
variable Y and explanatory variables X postulates that P(x)=P(Y = 1 | X=x) = 

exp (x',P)/[1 + exp (x'P)]. Assuming that the Y values in the population are independent, 
the m.l.e. of B in the case of a simple random sample is obtained as the solution to the 
likelihood equations Ei,s[Yi - P(xi)lxi = 0. As shown by Chambless & Boyle (1985) and 
Scott & Wild (SHS, ch. 9), the m.l.e. becomes biased and inconsistent when the sampling 
design is informative or when the logistic model does not hold in the population. Hence, 
the authors propose to estimate p in such cases by solving the equations ies wi[yi - 
P(xi)]xi = 0. Examples for possible violation of the logistic model in the population are: 
exclusion of important covariate variables from x, nonlinear effects of some of the 
covariate variables and intracluster correlations. 

Even if the logistic model assumptions are violated, the use of the model can still be 
justified since it suggests 'useful population quantities as targets for inference' (Binder, 
1983, Scott & Wild, SHS ch. 9). Indeed, Scott & Wild show that when the logistic model 
assumptions are violated, the coefficients P solving the census likelihood equations may be 
interpreted as 'defining the logistic model P(x, 1) which 'best approximates' the true 
model. 

Example 5.3 Fitting models to panel survey data. Folsom, LaVange & Williams (KDKS, 
p. 108-138) discuss several methods of estimation and inference based on the randomiza- 
tion distribution of panel survey data. Models considered include the general linear 
multivariate model for repeated measurements with missing observations on the 
dependent variable, polynomial growth curve models and models used for survival 
analysis like the discrete proportional hazards model. In all the analyses presented, the 
classical model based estimators are modified by weighting the observations with the 
sampling weights. A weighted version of the EM algorithm for maximum likelihood 
estimation is also presented. (Pfeffermann, 1988, employs a similar idea in a different 
context). As argued by the authors, 'the effects of sampling designs that involve unequal 
probabilities of selection and clustering must be taken into account when applying 
classical longitudinal data analysis'. Estimation of proportional hazards models from 
survey data is considered also by Chambless & Boyle (1985) and Binder (1992). 

Example 5.4 Estimation of distribution functions. Chambers & Dunstan (1986) 
consider estimation of the distribution function of a response variable, Y, from a complex 
survey, when the values of an auxiliary variable, X, are known for every element in the 
population. The authors assume the model Yi = Pxi + v(xi,)e (i = 1,..., N) where 
v(xi) = x>2 and the e, are iid with zero mean and derive a model based estimator for 
F(t) = P(Y t). Empirical results show the much better performance in small samples of 
the model dependent estimator as compared to the customary, design based estimator 

Fd(t) = > [A(t - yi)wi]/ wi, (5.2) 
ieS ieS 

where A(. ) is the step function such that A(a) = 1 when a > 0 and A(a)= 0 otherwise. 
The problem with the authors' estimator is that it performs poorly when, for example, the 
assumption on the variance of the error terms is violated. In order to deal with this 
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problem, Rao, Kovar & Mantel (1990) propose a weighted difference type estimator 
which is asymptotically unbiased for F(t) under the model and asymptotically design 
unbiased for the distribution FN(t) = _=i1 A(t - yi)/N in the finite population. The authors 
derive an estimator for the randomization variance of the proposed estimator. 

5.2 Drawbacks of Randomization Based Inference 

Focusing on CDPQ as the target of inference and restricting to DC estimators is not 
without a price. As illustrated in many studies, (see references below), if the model 
postulated for the sample data is correct, the use of weighted estimators can result in 
substantial loss of efficiency compared to the use of optimal, model dependent estimators. 
In general, the loss in efficiency is larger, the smaller is the sample size and the larger is 
the variation of the sampling weights. 

It is important to emphasize also that although weighted statistics are asymptotically 
unbiased when averaging over all possible samples, they may exhibit serious biases under 
the model (1) distribution, with the selected sample held fixed. Smith (1984) makes the 
observation that the robustness of randomization based inference is only achieved 'by 
converting the conditional bias into a component of variance'. It is clear however that as 
the sample size increases, the probability of selecting 'extreme samples' which produce 
large conditional biases is decreased. 

Articles illustrating conditional and unconditional properties of randomization based 
estimators under given models include: Hausman & Wise (1981), Holt, Smith & Winter 
(1980), Jewell (1985), Nathan & Holt (1980) and Pfeffermann & Holmes (1985) in 
regression analysis; Smith & Holmes (SHS, ch. 8) in more general aspects of multivariate 
analysis; Scott & Wild (SHS, ch. 9) in logistic regression, Nordberg (1989) in GLM and 
Rao, Kovar & Mantel (1990) in distribution function estimation. 

Another important limitation of randomization based inference is that by focusing on 
CDPQ as the target quantities, the inference is restricted to populations which have a 
similar structure to that of the population under study. Kalton (KDKS, p. 580) discusses 
the following simplified example. Suppose that it is required to estimate the transition 
probabilities in a simple Markov chain model. If the model holds, every individual has the 
same transition probabilities and those probabilities can be estimated under the model by 
the simple unweighted sample proportions. Suppose, however, that the model is false 
with older persons having different transition probabilities from younger persons. Let the 
sample be selected by a stratified design with the strata defined by age. If older persons 
have higher sample inclusion probabilities than younger persons, the unweighted sample 
proportions depend on the actual sampling fractions within the strata and they are 
generally meaningless. The weighted estimates on the other hand estimate the cor- 
responding population proportions so that they are meaningful estimates. The weighted 
estimators fail, however, to provide meaningful estimates for populations with a different 
age composition. It is clear also that the weighted estimators are biased in estimating the 
separate probabilities holding in the various strata. Thus, the protection offered by the 
use of the weights applies only in a restricted sense. This limitation is quite general and 
applies to other inference models. 

Finally, a limitation of randomization based inference raised in the literature is that 
there is no clear principle in the choice of DC estimators. We come back to this issue in 
Section 7. 
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6 Weighting as the Only or Best Alternative 

6.1 Weighting as the Only Alternative 

When the data available to the analyst are already in the form of weighted sample 
estimates, the use of the weights in the inference process is inevitable. This happens for 

example in the case of a 'secondary analysis' from summary tables for which the 
researcher may not have access to the detailed data. The classical case of a secondary 
analysis of this kind is contingency tables analysis from cross classified tables of estimated 
counts. Hidiroglou & Rao (1987) describe the production of such estimates from data 
obtained from the Canada Health Survey (1978-1979). The sampling design used for this 
survey is a multistage stratified cluster sampling design which is typical to many complex 
surveys. For a given cell i, the count estimate Ni has the general form 

i (Na/^a)[h 2 > 
W^tkYia(htk) 

= E (NaI/aa)Sia (6. 1) 
a h t k a 

where Ya(htk) is one if sample unit k from PSU t of stratum h belongs to the ith cell and 
the ath age-sex group and is zero otherwise. The ratios (Na/Na) are poststratification 
adjustment factors which use the census age-sex counts Na to decrease the variance of the 
estimators. 

With Ni as the input data, the classical tests for homogeneity and goodness of fit of 
loglinear models, based on multinomial or independent Poisson sampling are no longer 
valid. In fact, Rao & Scott (1981, 1984, 1987) show that the classical x2 statistics are 
distributed asymptotically as weighted sums EbiXi of independent X1) variables {Xi}, 
where the weights 6i are eigenvalues of a 'generalized design effects' matrix. This matrix 
again depends on the sampling weights through the estimated V - C matrix of the cell 
count estimators. The authors propose first and second order corrections to the x2 
statistics which account for the effect of the design. Other methods for analysing 
contingency tables obtained from complex survey data utilize the large samples Wald 
statistic-Grizzle et al. (1969), Koch et al. (1975), Nathan (1975) or the Jackknife 
Chi-squared statistic-Fay (1985). For additional references and discussions see the 
review articles of Binder et al. (1987), Nathan (1988) and Rao & Thomas (SHS, ch. 4). 

The important implication from the discussion above is that while the use of the 
sampling weights is inevitable when the inn the put data already consist of weighted statistics, 
classical methods of data analysis which assume simple random sampling may no longer 
be valid. An interesting question arising in this respect is whethetr in the case where 
individual observations are available, alternative, 'weights-free' procedures for contin- 
gency tables analysis are plausible. Following the discussion in Section 3, the answer to 
this question depends on whether the design variables defining the sampling scheme can 
be identified and incorporated in the model. 

For the case of a stratified sample with simple random sampling within strata, Nathan 
(1975) constructs tests of overall independence between qualitative variables I and J by 
creating a separate layer for each stratum h. The input data consist of the sample counts 
{nijh}. Holt & Ewings (SHS, ch. 13) fit logistic models to data obtained from a two stage 
cluster sample. The input data consist in this case of the estimated logits 4 = log [P(Y = 
1 |j)/P(Y =0 j)] in individual clusters c = 1,..., M where j defines the different 
combinations of the explanatory variables in the contingency table. The model permits 
random cluster effects which vary across the combinations of the explanatory variables 
within the clusters. Thus, 'weights-free' procedures for contingency tables analysis are 
possible, provided that the ignorability conditions can be satisfied but it is not clear that 
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these procedures are statistically more efficient than procedures which use the aggregated 
weighted estimates. 

6.2 Weighting as the Best Alternative 

In Section 6.1 we consider situations where the use of the weights is practically 
imposed, either because of data availability or because alternative procedures of modeling 
the data are not known. There are situations, however, where the use of the sampling 
weights is the optimal strategy under a given model and inference rule. Below we list 
three examples. See the corresponding references for the models used in each case. 

(a) Bayesian prediction of finite population means from a disproportionate stratified 
sample-Binder (1982), Little (1989). 

(b) Maximum likelihood estimation of Bernoulli probabilities from poststratified 
samples-Alexander (1987). 

(c) Maximum likelihood estimation of the transition probabilities of a Markov chain 
in retrospective sampling-Hoem (KDKS, p. 539). 

7 Different Approaches for Incorporating the Weights 

7.1 Preface 

In this section we survey more systematically the approaches proposed in the literature 
for incorporating the sampling weights {wi = (1/tri), i E s} in the inference process. We 
restrict the discussion to point estimation which is where the various approaches differ 
mostly. The following points should be borne in mind when comparing these approaches: 

-Different approaches may lead to the same estimators 
-The same approach may produce different estimators 
-Not all the approaches are aimed at producing DC estimators 
-In some of the approaches the weights come into picture indirectly as a result of 
the use of particular models. 

7.2 Overview 

7.2.1 Modifications of Model Dependent Estimators 

By this approach, estimators with explicit expressions are modified so as to make them 
DC for the CDPQ. Consider for example the estimation of the slope coefficient in simple 
regression. The OLS estimator can be expressed as 

bOLSo =m E yixi - ( Y) (ii is o e Xi] tn iES S n iES E S n iES. 

A modified, DC estimator of the census slope coefficient, B, defined by (2.2) is obtained 
by replacing each of the simple means in the expression of boLS by the Horvitz- 
Thompson (H-T) estimator of the corresponding population mean so that for example 

EiESyixi is replaced by N Ei,syixi/jri. The resulting estimator is not in general the same 
as the DC estimator obtained from (1.1) for the case of simple regression. A sufficient 
condition for the coincidence of the two estimators is that iiE,s(1/.li)= N which for 
arbitrary designs holds only in expectation. Examples of the use of this approach for 
incorporating the weights in the case of regression analysis can be found in Dumouchel & 
Duncan (1983), Fuller (1975, 1984), Kish & Frankel (1974), Nathan & Holt (1980), 
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Pfeffermann & Lavange (SHS, ch. 12), and Shah, Holt & Folson (1977). See also Koch et 
al. (1975) for application of the approach for general linear models, and Smith & Holmes 
(SHS, ch. 8) for its possible use in multivariate analysis. 

The fact that more than one DC estimator is available for the slope coefficient 
highlights a criticism often raised in the literature against randomization based inference 
namely, that there is no clear principle in the choice of estimators (Little, 1989). In fact, 
for the case where selection to the sample is based on the known population values of a 
set Z of design variables, Peffermann & Holmes (1985), following a suggestion by W. 
Fuller consider another DC estimator for the slope coefficient. This estimator 'corrects' 
the probability weighted estimator (1.1) by utilizing the known differences between 
sample and population moments of the design variables. (A similar idea is employed in 
the estimators proposed by Rao, Kovar & Mantel, 1990, for the percentiles of distribution 
functions.) Another estimator for this case is proposed by Nathan & Holt (1980). The 
authors modify the m.l.e. of the slope coefficient as obtained under the assumption that 
(X, Y, Z) is multivariate normal by replacing sample means, variances and covariances by 
the corresponding weighted statistics. 

7.2.2 Restriction to Models that Yield DC Estimators 

This approach is due to Little (1983, 1989) but its approach is e is lication has been restricted so far 
to simple stratified sampling. It is based on the postulate that if DC estimators for the 
CDPQ are required, then inference should be based on models that yield such DC 
estimators. Thus, for estimating the mean of a normal population, Little proposes to 
consider the fixed stratum-effects model, Yni il, h-qindN(gh, 2); P(Cn, ln ah) a 
constant, which, for large samples yields the H-T estimator Ms= 
h= (NnN)es (yn) as the posterior mean whe an re L denotes the number of strata, 

{Nn} are the strata sizes and {nn} the corresponding strata sample sizes. Alternatively, 
the author considers a random stratum-effects model by which h I (H, 62) ind N(, 62). 

Assuming in addition that P(S, In Ah, In 6) a constant, the posterior mean of M= 
h=iL ,EN^ Yhi/N is again DC under the randomization distribution. These results extend 

to the estimation of regression models yielding approximately the estimator ,^ of (1.1) in 
the fixed effects case and another DC estimator of the census vector of coefficients under 
a model which postulates random slopes and intercepts. 

A notable characteristic of Little's approach is that the sampling design is featured in 
the models. As noted by the author, however, what is still lacking in this approach is 
guidance about the choice of such models for arbitrary designs. Indeed, simulation results 
presented by the author indicate that in small samples, the model dependent inference 
can be very sensitive to the model assumptions. Featuring the sampling design in models 
fitted to complex survey data (but without necessarily requiring design consistency) has 
been advocated and illustrated in other studies. For example, Alexander (1987), 
Chambless & Boyle (1985), Dumouchel & Durican (1983), Nathan (1975) and Scott & 
Wild (SHS, ch. 9), account for fixed stratum effects. Holt & Ewings (SHS, ch. 13), and 
Pfeffermann & Lavange (SHS, ch. 12) account for random cluster effects. 

7.2.3 The Pseudo Likelihood Approach 

The prominent feature of this approach is that it utilizes the sampling weights to 
estimate the likelihood equations that would have been obtained in the case of a census. 
To fix the idea, suppose that the population values {Y,, t = 1... N) are independent 
with pdfs f/(y,; 0) which depend on an unknown parameter vector 0. In the case of a 
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census, the m.l.e. of 0 maximizes the log likelihood 1(o) = EN=1 logf,(y,; 0) and in regular 
cases, it solves the likelihood equations 

N 

U(0) dl(0)1d0 = d u,(yt, 0) = 0 (7.1) 
t=l 

where 'd' defines the derivation operator and ut(yt, 0) =d logf,(yt; 0)/dO. The pseudo 
m.l.e. (p.m.l.e.) of 0 is defined as the solution of U() = 0 where U(0) is DC for U(O). 
The common estimator of U(0) in the literature is the H-T estimator so that the p.m.l.e. 
of 0 is the solution of 

(wi)ui(Yi, 0) = (7.2) 
ieS 

The set of equations defined by (5.1) is an example for the use of this approach when 
estimating the regression coefficients of the linear regression model with iid normal 
residuals. The resulting estimator is again Iw of (1.1). See Binder (1983) and Jonrup & 
Rennermalm (1976). 

For the logistic regression model the p.m.l.e. of the vector of coefficients is obtained as 
the solution of the equations Eie wi[yi -p(xi)]xi = 0 where p(x) =p(Y = 1 X = x) = 

exp (x'p)/[1 + exp (x'p)], c.f. Chambless & Boyle (1985) and Scott & Wild (SHS, ch. 9). 
See also Rao & Thomas (SHS, ch. 4) for the use of p.m.l.e. when estimating log linear 
models. Other notable references are Binder (1983) and Nordberg (1989) for the 
estimation of the parameters of the GLM and Binder (1992), Chambless & Boyle (1985) 
and Folsom et al. (KDKS, p. 108-138) for the fitting of proportional hazards models. 

A general discussion of the pseudo likelihood approach is entailed in Skinner (SHS, ch. 
3). Binder (1983), and Chambless & Boyle (1985), follow Fuller (1975, 1984) in 
establishing conditions under which the distribution of nl(0pmle- 0) converges to the 
normal law with zero mean. Binder (1983) develops a general method for estimating the 
randomization V - C matrix of 0pmle. 

7.2.4 Estimating Functions 

This approach focuses on the census estimating function (EF) as the target population 
quantity. The key reference is Godambe & Thompson (1986). Let y' = (y. .. YN) be the 
population values of a univariate random variable Y generated from a distribution 5(0) 
indexed by the scalar parameter 0. An unbiased EF for 0 based on y is the function 
g(y, 0) such that 

E[g(y, 0)] = 0 (7.3) 
The function g*(y, 0) is optimal among the unbiased EF if it minimizes the quantity 

Et(g2)/[Ej(dg / dO)0=:e]2 (7.4) 

If g*(y, 0) is optimal then the equation g*(y, 0) =0 is called the optimal estimating 
equation and the solution 0N is the optimal estimate. Notice that ON is the CDPQ for 0 
under the estimation rule g*(y, 0) = 0 as defined in Definition 1 of Section 2. 

So far we considered the case of a census. Let h(ys, 0) be an EF applied to the sample 
data. Godambe & Thompson (1986) restrict to the case where g*(y, 0) is linear, that is, 
g*(y, 0) = E tN: q(Yt,, 0)a,(0) where Ej[,(y, 0)] = 0, and require that h(ys, 0) is design 
unbiased for g*(y, 0), i.e. ED[h(ys, 0)] = g*(y, 0) for every population vector y and each 
0. The optimal choice for h is defined as the function h* minimizing 

EED {h2[ys, 0()]} /[E~ED(dh /dO)e=o(e)l2 
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(compare with 7.4). The function h* is shown to be the H-T estimator 

h*(ys, 0)= > [<ti(yi, 0)/r,]. (7.6) 
ieS 

The restriction to functions h that are design unbiased for g* implies that minimization 
of (7.5) is equivalent to the minimization of A(S) = E,ED{h[ys, 0(~)] -g*(y, 0)}2. Thus, 
the function h * defined by (7.6) has the smallest mean squared error as an estimator of g* 
among all the functions h which are design unbiased for g*. Here the mean squared error 
is taken over the mixed D~ distribution. The sample estimate On of 0 is obtained by 
solving the equation h *(ys, 0) = 0. 

The theory of EF extends to the case of multivariate data and a vector parameter with 
minor modifications. The following observations are important when comparing this 
approach to the pseudo likelihood approach: 

-Under certain regularity conditions on the class of estimating functions and the 
class of density functions, the likelihood equations are the optimal estimating 
equations; 

-The use of estimating functions does not require a full specification of the joint 
distribution of the population values as required for the pseudo likelihood 
approach; 

-Under some regularity conditions the function h*(ys, 0) of (7.6) satisfies the 
inequality 

EED[h* - U(O)]2 EED[h - U(0)]2 (7.7) 

where U(0) is the log likelihood defined by (7.1) and h(y5, 0) is any other linear design 
unbiased EF. The relationship (7.7) provides a theoretical justification for the use of the 
pseudo likelihood approach in situations where it yields the optimal estimating equation. 

7.2.5 The Use of the Sampling Weights as Surrogates of the Design Variables 

In the approaches considered so far, the sampling weights are not included as part of 
the model and they are only brought in at the inference stage. In this and the next section 
we review studies which utilize the weights as part of the model. 

Rubin (1985) proposes to use the vector n' of the first order inclusion probabilities as 
surrogates of the set of design variables in situations where the information available on 
the design variables is not sufficient to secure the ignorability conditions (see Section 3.2), 
or when modelling the conditional distribution of the response variables, given the design 
variables, is too complicated. Let Z denote as before the matrix o the atri design variables 
values. Rubin defines the column vector a' = (a,. . . aN) = a(Z) to be an adequate 
summary of Z if P(I I Z) = P(I I a) where I is the sample indicator variable defined in 
Section 3.2, and shows that the vector an of inclusion probabilities ('propensity scores' in 
the author's terminology) is the 'coarsest' possible adequate summary of Z. Clearly, if 1 is 
an adequate summary of Z, P(Ys I Ys, xr, I) = P(Ys I Ys, x) so that given xr the sampling 
design is ignorable (see Section 3.2) and specification of the conditional distribution of Y 
given n is all that is needed for a valid inference. 

Rubin's approach offers a principled method for incorporating the weights but it 
requires the knowledge of the inclusion probabilities for all the population units and not 
just for the sample units. More crucial, and as illustrated by Rubin (1985) and Sugden & 
Smith (1984), the vector x can be too coarse and hence not be an adequate summary. See 
Smith (1988) for possible expansions of the vector n in such cases. 
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7.2.6 MLE Derived from Weighted Distributions 

The other approach considered in the literature for incorporating the weights as part of 
the model is the use of weighted distributions (Patil & Rao, 1978; Rao, 1985). In a way, 
this approach is the converse of Rubin's approach since it focuses on the probabilities 
P(y,; a) = P(i E S | y,) where a is a vector parameter rather than on the densities f(y, 3r). 

Weighted distributions are obtained by modifying the distribution of Y in the 
population to account for the probability of actually observing Y given that Y has been 
realized. Thus, 

fW(yi; X) = [P(yi; a)f(y,; 0)/P(i e s)] =f(yi i i E s) (7.8) 

where 

P(i Es)= P(yi; )f(yi; 0) dy. 

Assuming that the observations Yi can be considered as independent, the likelihood for 
0 is 

n 

L(0; Ys) = Const x f f(yi; )/[ P(y; a)f(y; 0) dy. (7.9) 
i=1 

The likelihood (7.9) is seen to depend on the conditional selection probabilities P(y; a) 
that enter into the denominator. Thus, the use of this likelihood requires in addition to 
the definition of the pdff(y; 0) a specification of the relationship P(y; a) between the 
sample selection probabilities and the variables observed in the sample. This can be 
accomplished by modeling the empirical relationship in the sample between the sample 
inclusion probabilities and the observed measurements. Having identified a suitable 
model, the vector parameter a can be included as part of the unknown parameters over 
which the likelihood is maximized or it can be estimated externally in which case it may 
be fixed at its estimated value when maximizing the likelihood (7.9). 

Krieger & Pfeffermann (1992) illustrate the use of this approach for estimating the 
parameters of a bivariate normal distribution. The authors consider two different 
sampling designs-PPS sampling and disproportionate stratified sampling, and distinguish 
between cases where the sampling designs are ignorable and where they are informative. 
Simulation results illustrate the good performance of estimators obtained by this 
approach. An earlier use of these ideas for the estimation of regression coefficients is 
reported in Hausman & Wise (1981). See also Smith (1988) for a formulation applicable 
to PPS sampling under which the method of moments estimators, derived from the joint 
weighted pdf fW(y, 7) reduce to the corresponding H-T estimators. 

8 Summary 

In Section 7 we survey six approaches for incorporating the sampling weights in the 
inference process. In the first four approaches the weights are not part of the model and 
they are used to produce DC estimators for CDPQ of the model parameters. In the other 
two approaches the weights are incorporated as part of the model but the resulting 
estimators are not necessarily DC for the CDPQ. 

The first approach described in 7.2.1 is restricted to estimators with known explicit 
expressions. Little's approach offers a model based theory for incorporating the weights 
but a more general application of this approach requires the development of guidelines 
for the choice of such models. The two approaches entitled 'pseudo likelihood' and 
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'estimating functions' are similar in the sense that inference is directed at the optimal 
estimating equations that would be obtained in the case of a census. These optimal 
equations are frequently the same under the two approaches. A critical drawback in the 

reported applications of these approaches (but not in principle in the philosophy behind 
them) is the restriction to simple weighting of the individual functions ui(yi, 0) or 4i(Yi, 0) 
to achieve exact design unbiasedness (see equations (7.2) and (7.6)). In other words, 
valuable information on the design variables or some other concomitant variables, 
possibly known to the analyst, is not exploited in the estimation of the population optimal 
estimating equatiaons. The estimators proposed by Fuller (see Pfeffermann & Holmes, 
1985) for regression coefficients and by Rao, Kovar & Mantel (1990) for percentiles of 
distribution functions are examples for the use of design variables or other concomitant 
information to obtain more efficient DC estimators than the simple weighted estimators. 
We survey these studies in previous sections. Similar procedures can be employed for 

estimating the population likelihood or estimatinng funcation l s. 
The use of 'weighted distributions' described in 7.2.6 provides a principled method for 

incorporating the weights in the inference process. The application of this approach 
requires however to model the relationship between the sample selection probabilities 
and the observed data. The key question to the thuse of this approach is therefore whether 
this relationship can be identified and estimated from the sample data. It would seem that 
this question can only be answered by analysing actual data obtained from commonly 
used sample surveys. Research in this direction would be a valuable contribution. 
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Resume 

Le but de cet expose est de fournir un examen critique des recherches, pour r6spondre a deux questions: (i) 
Est-ce que l'emploi des poids de sondage peut etre justifi6 pour l'inference analytique sur les parametres d'un 
modele et, dans ce cas, dans quelles circonstances? (ii) Peut-on developer des lignes directrices pour 
l'introduction des poids dans l'analyse? La conclusion generale de cette etude est que les poids peuvent etre 
utilis6s pour tester et pour prot6ger contre des plans de sondage informatifs et contre la specification fausse du 
modele de la population. On condiere six approaches differentes pour introduire les poids dans le processus 
d'inference. Les quatre premieres ont pour but de produire des estimateurs qui sont consistants selon le plan de 
sondage pour les quantit6s descriptives de la population qui correspondent aux parametres du modele. Les deux 
autres approches essaient d'introduire les poids dans le modele. 
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