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■ Abstract The paper discusses the use of latent variables in psychology and social
science research. Local independence, expected value true scores, and nondeterministic
functions of observed variables are three types of definitions for latent variables. These
definitions are reviewed and an alternative “sample realizations” definition is presented.
Another section briefly describes identification, latent variable indeterminancy, and
other properties common to models with latent variables. The paper then reviews the
role of latent variables in multiple regression, probit and logistic regression, factor
analysis, latent curve models, item response theory, latent class analysis, and structural
equation models. Though these application areas are diverse, the paper highlights the
similarities as well as the differences in the manner in which the latent variables are
defined and used. It concludes with an evaluation of the different definitions of latent
variables and their properties.
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INTRODUCTION

It is impossible to date the first use of latent variables. The idea that observable
phenomena are influenced by underlying and unobserved causes is at least as old as
religion, where unseen forces affect real world events. In the more secular sphere of
everyday living, latent variables find wide application. From the response to “how
are you feeling today?” to the description of a worker as “efficient” or a student as
“bright,” such abstract concepts elude direct measurement. What these examples
illustrate is the common practice among humans to explain, to understand, and
to sometimes predict events based on the role of concepts that are not directly
observable. However, these more metaphysical, and everyday uses of unobserved
forces depart from the use of latent variables in psychology and the social sciences.
The scientific use of latent variables places a premium on designing research to test
hypotheses about latent variables and having the ability to falsify hypotheses about
them. In addition, latent variables provide a degree of abstraction that permits us
to describe relations among a class of events or variables that share something in
common, rather than making highly concrete statements restricted to the relation
between more specific, seemingly idiosyncratic variables. In other words, latent
variables permit us to generalize relationships.

Psychology has had its critics of latent variables, with Skinner (1976) being a
well-known modern one. However, latent variables have been so useful in science
that they pervade virtually all fields (see Glymour et al. 1987, pp. 22–26). Psychol-
ogy and the social sciences are no exceptions. Although latent variables are part
of numerous statistical and data analyses models, we do not have a single general
definition of a latent variable that would include these diverse applications. Rather
we have definitions of latent variables that are closely tied to specific statistical
models and few systematic comparisons of these different definitions and the im-
plications of the differences. Furthermore, the common problems that accompany
the use of latent variables are obscured by the diverse definitions, each of which
is tied to a limited number of applications.

Given the frequent appearance of latent variables in psychology and social
science, it is surprising that so little work in these areas has focused on their
nature. Borsboom et al. (2001), Edwards & Bagozzi (2000), H¨agglund (2001),
and Sobel (1994) are exceptions, but overall, my literature search concurs with
Borsboom et al.’s conclusion that “. . . the theoretical status of the latent variable
as it appears in models for psychological measurement has not received a thorough
and general analysis as yet.”

This paper aims to contribute to the discussion of latent variables in psychology
and the social sciences. More specifically, the goals of the paper are (a) to review
the major definitions of latent variables in psychology and the social sciences,
(b) to formalize an intuitive and general definition of latent variables, (c) to examine
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latent variables in common statistical models in light of these definitions, and
(d) to discuss issues that emerge when using latent variables.

I begin by reviewing several common ways of defining latent variables and
introduce a “sample realizations” definition that is based on an intuitive notion of
latent variables. With these definitions in hand, the next section discusses common
properties and issues that arise when employing latent variables. Following this is a
discussion of latent variables in a variety of statistical models including multiple re-
gression, limited dependent-variable models (e.g., logistic and probit regressions),
factor analysis, latent curve models, item response theory, latent class analysis,
and structural equation models. The concluding section reviews the major find-
ings from this review and highlights issues common to the use of latent variables.

DEFINITIONS OF LATENT VARIABLES

Unmeasured variables, factors, unobserved variables, constructs, or true scores are
just a few of the terms that researchers use to refer to variables in the model that are
not present in the data set. Many definitions of latent variables appear implicitly
or explicitly. We can distinguish between nonformal and formal definitions. The
next subsection briefly reviews several nonformal definitions. Four subsections
that follow will present more formal definitions of latent variables: (a) local inde-
pendence, (b) expected value, (c) nondeterministic function of observed variables,
and (d) sample realization.1 Next, I apply them to statistical models in psychology
and the other social sciences in which latent or unobserved variables appear. This
enables us to assess the applicability of these definitions across a range of areas.

Nonformal Definitions

One common set of definitions of latent variables considers them as “hypothetical
variables.” For instance, Harman (1960, p. 12) refers to factors as “hypothetical
constructs.” Similarly, Nunnally (1978, p. 96) defines a construct as something
that scientists put together out of their imaginations (see also Bartlett 1937, p. 97).
From this perspective, a property such as self-esteem is not real, but a hypothetical
variable that comes from the mind of the researcher. This perspective contrasts
with the Platonic view of latent variables in which the latent variables are seen as
real (Sutcliffe 1965). Loevinger (1957, p. 642) makes the distinction between traits
and constructs: “Traits exist in people; constructs (here usually about traits) exist in
the minds and magazines of psychologists.” Similarly, Edwards & Bagozzi (2000,

1These do not exhaust the formal definitions of latent variables. For example, Shafer (1996,
pp. 352–56) uses probability trees and graph theory to briefly discuss latent variables.
Similarly Pearl (2000) defines latent variables using graph theory. However, the definitions
included here are among the most common formal definitions. Some ideas in the graph
theory definitions are closely related to the local independence definitions of latent variables.
It is too early to determine the impact of these graph theory–based definitions.
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p. 156–57) view constructs as not real but as attempts to measure real phenomena.
In their view the construct of self-esteem is not real, but there are real phenomena
(or traits) to which researchers apply this term and construct.2

Another common definition type treats latent variables as impossible to mea-
sure, as unobservable or unmeasurable. J¨oreskog & S¨orbom (1979, p. 105) state
that “latent variables. . . cannot be directly measured.” Similarly thePenguin Dic-
tionary of Economics(Bannock et al. 1998) defines a latent variable as “a variable
in regression analysis which is, in principle, unmeasureable.” These definitions
presume knowledge that it is impossible to measure a latent variable. In a sense
this presupposes that the researcher is able to know the future and that in that
future there will be no innovations that will permit direct measurement of the la-
tent variable. Thus, using this definition we would view self-esteem as not now
directly measurable or measurable in the future. One difficulty with this defini-
tion is the assumption that we know the future and the impossibility of measuring
a variable. Unforeseen technological or conceptual developments can occur that
might make possible the measurement of variables that previously were treated as
unmeasurable. A latent variable as unmeasurable definition does not permit this
possibility.

A third type of informal definition defines latent variables as a data reduction
device. Harman (1960, p. 5) says that “. . . a principle objective of factor analysis is
to attain a parsimonious description of observed data.” Thus, the latent variable or
factor is a convenient means of summarizing a number of variables in many fewer
factors. This definition gives primacy to the descriptive function of latent variables.
It does not give much attention to latent variables that researchers define prior to
analyzing the data or to the use of statistical procedures that test the implications
of latent variable models. With this data reduction definition self-esteem is a term
we might assign to a factor to summarize a group of items that “load” on a factor.
The term is a shorthand expression for an underlying variable that helps explain
the association between two or more variables.

It is possible to combine definitions. For instance, MacCallum & Austin (2000)
state that “latent variables are hypothetical constructs that cannot be directly mea-
sured.” Their definition combines the hypothetical and unmeasurable definitions.
Taken individually or combined, these informal definitions do not capture all the
ways in which researchers view latent variables. They appear best suited to ex-
ploratory analyses in which the nature of the latent variables and their relationships
to observed variables is not specified in advance. Furthermore, these definitions
are not based on formal definitions about the properties of the latent variables and
do not provide technical assumptions about them.

2Pursuing this distinction between real and hypothetical variables leads to a metaphysical
dilemma of deciding when something is real. Defining latent variables as only hypothetical
narrows the use of the concept of latent variables and raises metaphysical debates on the
meaning of “real variables.” It seems preferable to leave the real or hypothetical nature of
latent variables as an open question that may well be unanswerable.
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Local Independence Definition

The “local independence” definition of a latent variable is one of the most com-
mon and popular ways to define a latent variable (Lord 1953, Lazarsfeld 1959,
McDonald 1981, Bartholomew 1987, Hambleton et al. 1991). The key idea is that
there are one or more latent variables that create the association between observed
variables, and when the latent variables are held constant, the observed variables
are independent. More formally,

P[Y1, Y2, . . . , YK ] = P[Y1|η] P[Y2|η] · · · P[YK |η] 1.

whereY1, Y2, . . . , YK are random observed variables,η is a vector of latent vari-
ables,P[Y1, Y2, . . . , YK] is the joint probability of the observed variables, and
P[Y1|η]P[Y2|η] · · · P[YK|η] are the conditional probabilities. The joint probability
of the observed variables equals the product of the conditional probabilities when
the latent variables are responsible for the dependencies among the observed vari-
ables. In this definition we permit either continuous or discrete observed or latent
variables in recognition of the variety of situations in which this definition of local
independence applies. In a factor analysis, for instance, the latent and observed
variables would be continuous; in item response theory continuous latent vari-
ables would appear in conjunction with discrete observed variables; in latent class
analysis both observed and latent variables would be discrete.

McDonald (1981, 1996a) distinguished the above “strong” definition of local
independence from a “weaker” form in which the linear association between vari-
ables is zero once the latent variables are held constant. An example of this weak
form of the definition is

ρYi Yj ·η = 0 2.

for all i, j where i 6= j . ρYi Yj ·η is the partial correlation between two observed
variables controlling for the vector of latent variables. Ifη contains the vector of
latent variables underlying these observed variables, then this partial correlation
will be zero once they are controlled. If the association remains, then we do not have
the complete set of latent variables that underlie the data and we need to add more
of them (Bartholomew 1987, p. 5). This is a weaker form of the local independence
definition in that it refers to only the linear association between variables, whereas
the stronger form of the definition refers to any dependence between the observed
variables. Both forms of the local independence definitions define latent variables
by their ability to completely explain the association of observed variables. Using
this definition we could treat self-esteem as a latent variable if once it is held
constant, there is no remaining dependence (or association) among the indicators
that measure it. If dependence (association) remains, then we need to introduce
additional latent variables or dimensions of self-esteem to capture it.

Several key implications of this definition are that it assumes (a) errors of mea-
surement are independent (or uncorrelated), (b) observed variables or indicators
have no direct or indirect effects on each other, (c) we have at least two observed
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variables, (d) each latent variable must have direct effects on one or more observed
variables, and (e) the observed variables (indicators) do not directly affect the latent
variable. As I illustrate below, these properties lead to counterintuitive elimination
of some variables as latent variables.

Expected Value Definition

The expected value definition of a latent variable is most commonly associated
with classical test theory (e.g., Lord & Novick 1968, Lumsden 1976, J¨oreskog
1971). Here the term for the underlying variable is the “true score.” The true score
is equal to the expected value of the observed variable for a particular individual:

Ti ≡ E(Yi ), 3.

whereTi is the value of the true score for theith individual,E(.) is the expected
value, andYi is the random observed variableY for the ith individual. This ap-
proach to defining a true score treats it as a value that would be obtained if we could
perform a hypothetical experiment in which we could repeatedly observe Yi for the
ith individual without the responses being influenced by previous responses (Lord
& Novick 1968, pp. 29–30). The mean of these infinitely replicated experiments
would give us the true score value for that individual. Thus, rather than being
defined by conditional independence among two or more observed variables, as in
the preceding subsection, the expected value definition looks to the mean of the
observed variable values for an individual as the true score. If we had an indicator of
self-esteem for an individual, the true score on self-esteem would be the expected
value of this measure under the hypothetical situation of repeatedly observing the
indicator for the same individual where each trial would be independent of the
others.

The equation for the observed random variable is

Yi = Ti + Ei , 4.

whereEi is the error of measurement.
Several properties of the true score latent variable model are (a) its scale is

defined byE(Yi); (b) the error of measurement,Ei, has a mean of zero and is un-
correlated withTi; (c) the errors of measurement are uncorrelated for two different
observed variables; (d) the true scores have direct effects on their corresponding
observed variable; (e) the observed variables (indicators) do not directly affect the
latent variable; and (f ) two different observed variables have no direct or indirect
effect on each other. As with the conditional independence definition, I argue that
the true score latent variable model can lead to counterintuitive classifications of
variables as latent or not.

Nondeterministic Function of Observed Variables Definition

Bentler (1982, p. 106) defines a latent variable as follows: “A variable in a lin-
ear structural equation system is a latent variable if the equations cannot be
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manipulated so as to express the variable as a function of manifest variables only.”
An interesting aspect of Bentler’s definition is that it makes clear that we cannot use
observed or manifest variables to exactly determine the latent variable. Although
we might be able to manipulate the equations in which a latent variable appears,
we cannot manipulate it to the point at which the latent variable is completely
determined by the observed variables, that is, the latent variable is a nondetermin-
istic function of the observed variables. In our hypothetical self-esteem example,
self-esteem is a latent variable if we cannot manipulate its indicators to exactly
express the self-esteem variable. We might be able to estimate or predict a value
on the latent variable, but we would not be able to make an exact prediction based
on its observed indicators.

This definition does not have the same exclusions as the local independence
and expected value true score definitions of latent variables. It permits models
with correlated errors of measurement and observed variables that directly or
indirectly affect each other. The main restriction for this definition is that it is
devised for linear structural equation systems and some latent variable models
include nonlinear relations such as models with categorical observed variables. I
illustrate below how the definition leads to disturbances being classified as latent
variables in one model but not in another, whereas intuitively we would expect a
consistent classification.

Sample Realization Definition

The “sample realization” definition that I provide is inspired by the simplest,
intuitive understanding of a latent variable. Before giving more details on this
definition, I provide a brief orientation of how I view latent variables. I present this
orientation here rather than above because I do not assume that this perspective is
shared by others who use different definitions of latent variables.

The starting point is the objects of study. The most common objects of study
in psychology and the social sciences are individuals or groups. These objects
have properties. Properties are characteristics of individuals or groups such as
self-esteem, intelligence, cohesion, anxiety, etc. Theories hypothesize relations
between these properties. For instance, we might theorize that intelligence pro-
motes self-esteem. To test these ideas we build models. Models formalize the key
elements in a theory. The individuals or groups are the objects (cases) in models.
The variables in models represent the properties of objects and the model repre-
sents the relationships between the variables that are hypothesized in the theory.
A model, for instance, could have a variable for self-esteem and another for intel-
ligence, and the model would represent the hypothesized relation between them.
The variables in the model are either manifest (observed) or latent (unobserved).
Self-esteem and intelligence are both best represented as latent variables. More
generally, our interest lies in the latent variables that are in models. The latent
variables represent properties in a formal model, but they are not identical to these
properties.
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The definition of latent variables that I propose is a simple and inclusive def-
inition of latent variables: A latent random (or nonrandom) variable is a random
(or nonrandom) variable for which there is no sample realization for at least some
observations in a given sample. In some ways this is not a new definition but is a
formalization of a common idea that a latent variable is one for which there are no
values. The definition permits the situation in which the random variable is latent
(or missing) for some cases but not for others. In many situations a variable that
is latent for any cases will be latent for all cases in a sample. The term “variable”
in the definition refers to something that takes more than one value so that values
that are constant across all cases are not included as variables.3 Note also that the
definition for random latent variables relies on the standard definition of a random
variable.4 The latent random variable differs from observed random variables in
that for the observed random variable our sample contains realizations. If a random
variable has realizations for some cases and not for others, then we can refer to
it as latent (or missing) for those missing cases and an observed random variable
for the other cases. Similarly, for nonrandom latent variables the variable takes
more than one value, but if all or a subset of cases do not have sample realizations,
then the variable is latent for those cases.

This definition of latent variables is rather minimalist and as such is more in-
clusive as to the variables considered as latent compared with the other definitions.
For example, latent variables as defined by local independence are a special case
of the sample realization definition, as are latent variables that conform to the
expected value definition.

From the perspective of the sample realization definition all variables are latent
until sample values of them are available. Of course, for many of the variables
in the psychological and social sciences we do not have the option of directly
observing such variables, so it will be latent for all cases in all samples. Our only
option is to indirectly observe it through the sample values of an observed variable.

Another aspect of the definition is that it defines a variable as latent or not
with respect to a particular sample. This implies that a variable could be latent
in all, none, or just some samples. This permits the possibility that a variable
is omitted in one sample but might be observed in another or it allows for the
possibility that changes in techniques or advances in knowledge might allow us to
measure variables previously treated as latent. For instance, before the invention of
accurate thermometers, we could consider temperature a latent variable. But once

3Regression coefficient parameters, for example, would not be variables if the same para-
meter holds for all cases in a sample. Alternatively, for random coefficient models in which
the regression parameters for the same variable differ across cases, the regression parameters
would be a variable by this definition. For an example of the latter case, see the section on
latent curve models.
4For example, “IfS is a sample space with a probability measure andx is a real-valued
function defined over the elements ofS, thenx is called a random variable” (Freund &
Walpole 1987, p. 75).
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Figure 1 Model of “morale” and “sense of be-
longing” with response effects indicators (Bollen
& Medrano 1998).

such thermometers are in use, their high accuracy permits us to treat their readings
as a sample value of the previously latent variable.5 Similarly to the degree that
psychological and social measurement improve, we might reach the point where
previously latent variables become observed variables.

The sample realizations definition permits models with correlated errors of
measurement, observed variables that directly or indirectly influence each other,
and many other nonstandard models. The key criterion is whether a variable has
values for cases in a given sample.

Example

An example taken from Bollen & Medrano (1998) provides a means to further
explore these definitions of latent variables. Figure 1 is a path diagram of a model
with two unmeasured variables, “sense of belonging” and “feelings of morale,”
enclosed in ovals. Observed random indicators of these variables are in boxes. The
unique components of these indicators are also enclosed in ovals and point toward
their respective measures. The straight single-headed arrows show the direct effect
of the variable at the base of the arrow to the variable at the head of the arrow. The

5An argument could be made that contemporary thermometers are not perfect, so that the
thermometer readings are not synonymous with temperature. However, the degree of mea-
surement error in thermometer readings is miniscule compared with the error in social
science measures. Considering thermometer readings as having negligible error is reason-
able for the contrasts I wish to make.
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curved two-headed arrow between belonging and morale signify the covariance
between them. Three indicators of each unmeasured variable are part of the model.
In addition, a response set effect is part of the model, where the response to one
indicator partially drives the response to the next indicator on the questionnaire. For
instance, the first indicator (M1) of feelings of morale follows the first indicator
(B1) of sense of belonging. Therefore, the model shows a direct path from B1
to M1. Similarly, additional direct effects correspond to the order in which the
indicators are given in the questionnaire.

Are morale and sense of belonging latent variables? The answer depends on
the definition of latent variable that we use. In the nonformal definitions these
variables would not be latent variables according to the data reduction definition
because the primary purpose is not to come up with a descriptive reduction of
the data. Rather, these indicators are created based on a theoretical definition of
morale and belonging (see Bollen & Medrano 1998).

Whether these variables are inherently unmeasurable or impossible to directly
measure is a problematic classification for the reasons described above: The defini-
tion presupposes knowledge that it will never be possible to directly measure these
variables. Certainly we do not now have the technology or knowledge to do so,
but we cannot say that it will never be possible. The last nonformal definition that
describes latent variables as hypothetical variables requires a brief explanation be-
fore assessing whether morale and belonging are latent according to this definition.
If we accept that latent variables are representations of properties of objects as I
explained in the sample realization definition section, then the latent variables are
not the same as the properties. In that sense they are hypothetical. However, if
we push this hypothetical definition to apply to the property the latent variable
represents, then the issue is less clear cut. Thus, it is possible that the properties
of morale and belonging are real even though the latent variables that stand in for
them in a model should not be reified.

Moving to the more formal definitions of latent variables, morale and belonging
would not qualify as latent variables according to the local independence definition,
because conditional on the values of morale and belonging, we cannot say that the
six indicators are uncorrelated. Indeed, the model shows a direct relation between
the indicators controlling for the unmeasured variables, thereby ruling out morale
and belonging as latent variables. It is interesting to note that if there were no direct
paths between the indicators shown in Figure 1, morale and belonging would
conform to the local independence definition and thereby be latent variables. It
seems counterintuitive to treat the variables as latent or not depending on whether
the response set effects are in the model.

Morale and belonging are not latent variables when we apply the expected value
definition. There are at least two problems that rule out these variables. One is that
the expected value of all of the indicators except B1 would include a term that
corresponds to the response set effect from the preceding variable. This would
not be captured by morale and belonging. The second problem is that if each
indicator has a unique component that is part of the error terms, then this unique
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component would contribute to the true score but would not be part of morale or
belonging.

The nondeterministic function definition would classify morale and belonging
as latent because we cannot write each latent variable as a deterministic function of
the observed variable. Similarly, the sample realization definition would classify
them as latent variables because we do not have sample realizations of these random
variables. We can only indirectly observe them through their indicators.

As this example illustrates, the definition makes a difference in whether we
would consider a variable as latent or not.

PROPERTIES OF LATENT VARIABLES

In addition to contrasting definitions of latent variables, it is useful to compare
some of the issues that often accompany latent variables. In this section I high-
light several contrasts that can be gleaned from the literature. The first important
distinction is that betweena posteriorianda priori latent variables. These terms
are not used in the literature, but they do capture a distinction that is discussed.
Thea posteriorilatent variables are latent variables that a researcher derives from
the data analysis. In contrast,a priori latent variables are hypothesized prior to
an examination of the data. The common distinction between exploratory and
confirmatory factor analysis (J¨oreskog 1969) helps capture this distinction. In ex-
ploratory factor analysis, the factors are extracted from the data without specifying
the number and pattern of loadings between the observed variables and the latent
factor variables. In contrast, confirmatory factor analysis specifies the number,
meaning, associations, and pattern of free parameters in the factor loading matrix
before a researcher analyzes the data (Bollen 1989, Ch. 7). Historically, the local
independence definition of latent variables is closely tied toa posteriorilatent vari-
ables in that latent variables (factors) are extracted from a set of variables until the
partial associations between the observed variables goes to zero. The researcher
defines the factors as part of a data reduction exercise.

Latent class analysis and other latent variable approaches also are distinguish-
able in whether they derive the latent variables from the data as part of the analysis
or whether they use the data to test prespecified hypotheses about the latent vari-
ables. In practice it is probably best to regard thea posteriorianda priori as two
points on a continuum in which most applications fall between these extremes.

A second issue is whether the latent variable is continuous, categorical, or a hy-
brid that falls between these ideal types. The question of whether the latent variable
has gradations of values helps determine its nature. We cannot answer this question
from the observed indicators of the latent variable, because it is possible to have a
continuous, categorical, or hybrid observed variable with either a continuous, cat-
egorical, or hybrid latent variable. For instance, is depression a continuous latent
variable with numerous gradations or are people either depressed or not, making it a
categorical variable? Or should antisocial behavior be a dichotomy or a continuous
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variable with a floor of zero? Empirical means cannot always distinguish the
nature of the latent variable from the empirical nature of the indicators (e.g.,
Bartholowmew 1987, Molenaar & von Eye 1994, Borsboom et al. 2001).

The third issue is the identification of the parameters associated with the latent
variable in a model. Model identification asks whether it is possible to find unique
values for the parameters that are in a model (Wiley 1973; Bollen 1989, Ch. 7; Davis
1993). Failure to achieve identification means that the factor loading or variance of
a latent variable might not be unique and that we cannot tell the false from the true
parameter values even if we have population data. Identification of latent variables
are resolved differently, depending on the latent variable and the type of model,
but usually it involves some minimal number of indicators or some constraints
on the variance of the latent variables. A necessary condition for identification is
that each latent variable must be assigned a scale. Though identification issues
are present in simultaneous equations that ignore measurement error, the issues of
identification in latent variable models raise additional complications.

Another issue is latent variable indeterminancy. This issue is well studied and
debated in the factor analysis literature (e.g., Bartholowmew 1987, 1996; Green
1976; Guttman 1955; Maruan 1996a; McDonald 1996a; McDonald and Mulaik
1979; Mulaik 1996; Sch¨onemann 1996; Steiger 1979, 1996a), but attempting to
estimate latent variables from the observed variables is common across applica-
tions of latent variable models. Resolution of this indeterminancy is theoretically
possible under certain conditions. Three conditions that can affect indeterminancy
are (a) when the sample size (N) goes to infinity, (b) when the number of ob-
served variables goes to infinity, and (c) when the squared multiple correlation
for the latent variable goes to one and the predictors are observed variables. Of
course, it would be highly unusual for one or more of these conditions to hold
exactly, but it is possible for a condition to hold approximately, thereby approx-
imately removing the indeterminancy. In the sections on statistical models we
illustrate how these conditions can nearly remove the indeterminancy of the latent
variable.

A final issue is that of whether the indicators of a latent variable arecausal
indicatorsor effect indicators(Blalock 1964, pp. 162–69; Bollen 1984; Bollen &
Lennox 1991; Edwards & Bagozzi 2000). Causal (formative) indicators are ob-
served variables that directly affect their latent variable. Examples include using
time spent with friends, time spent with family, and time spent with coworkers
as indicators of the latent variable of time spent in social interaction. Time spent
watching violent television programs, time spent watching violent movies, and
time spent playing violent video games would be causal indicators of exposure
to media violence. Effect (reflective) indicators are observed variables that are
effects of latent variables. Test scores on several tests of quantitative reasoning
would be effect indicators of the latent variable of quantitative reasoning. De-
gree of agreement with questions about self-worth would be effect indicators of
the latent variable of self-esteem. Nearly all measurement in psychology and the
other social sciences assumes effect indicators. Factor analysis, reliability tests,
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and latent class analysis are examples of techniques that assume effect indicators.
However, there are situations in which indicators are more realistically thought
of as causes of the latent variable rather than the reverse. Tests for causal versus
effect indicators have recently become available (Bollen & Ting 2000), but most
empirical research implicitly assumes effect indicators. Incorrectly specifying in-
dicators as causal or effect indicators leads to a misspecified model and holds the
potential for inconsistent parameter estimates and misleading conclusions (Bollen
& Lennox 1991).

In the next sections I illustrate how these varying definitions and properties
apply to common statistical models.

LATENT VARIABLES IN STATISTICAL MODELS

Regression Disturbances as Latent Variables

Anyone who teaches courses on factor analysis or structural equation models is
likely to have encountered skepticism when the idea of latent or unobserved vari-
ables is first mentioned. The reaction might be that such variables are too mystical
or are something we should refrain from using. What is not fully appreciated is that
it is quite likely that they have already been using unobserved, latent, or underlying
variables in the other statistical procedures they have learned. To illustrate this, a
convenient starting point is a multiple regression equation:

Yi = α + β1Xi 1 + β2Xi 2 + · · · + βK XiK + εi , 5.

wherei indexes cases and runs fromi = 1, 2, . . . , N; Yi is the value of the depen-
dent observed random variable for theith case;α is the equation intercept;βk is the
regression coefficient that corresponds to theXik variable wherek = 1, 2, . . . , K ;
andεi is the disturbance for theith case.

It is of interest to examine the definitions of the disturbance term,εi. Some au-
thors describeεi as a random variable that has three components: (a) an inherent,
unpredictable random component present in virtually all outcomes, (b) a compo-
nent that consists of a large number of omitted variables that influenceYi, and
(c) random measurement error inYi (e.g., Johnston 1984, pp. 14–15; Maddala
1988, p. 32). Other authors would add a fourth nonrandom component such as
would occur if a researcher assumes a linear relation when a curvilinear one is
more appropriate (e.g., Hanushek & Jackson 1977, pp. 12–13; Weisberg 1980,
p. 6). Assuming that the nonrandom error is negligible, we can write the regres-
sion disturbance as

εi = εri + εoi + εmi, 6.

whereεri is the inherently random component of the disturbance,εoi is a collection
of the random omitted variables that influenceYi, and εmi consists of random
measurement error in measuringYi. εi and each of its components are unobserved
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variables that explain the discrepancy betweenYi and its predicted values based
on the explanatory variables. The regression disturbance indicates a phenomenon
in which the unobserved variable is a composite function of two or more latent
variables rather than being a single component. In practice, researchers ignore the
components of the regression disturbance and treat it as a unitary term, but this is
not always the case.

If we consider that the analysis of variance and the analysis of covariance are
special cases of multiple regression that also have disturbances, we readily see
that much of psychology and the social sciences routinely use such unobserved
or latent variables in their statistical modeling. Hence, to purge our models of
unobservable or latent variables would require that we eliminate virtually all of
the statistical techniques common in the social sciences.

Though the previous paragraphs use the term latent variable to describe the
disturbance, not all of the definitions would includeεi as a latent variable. The
local independence definition presupposes at least two observed variables that
depend on the latent variable. In multiple regressionεi influences onlyYi. As such,
εi would not qualify as a latent variable. The disturbance,εi, would also fail to
satisfy the expected value definition of a true score (latent variable). By assumption,
E(εi) is zero for all cases, unlike the situation in which the expected value of an
observed variable would take different values for different cases in the sample.
More importantly, the expected value true score definition requires the expected
value of an observed variable, whereasεi is unobserved.

According to Bentler’s (1982, p. 107) definition, the disturbance would not be a
latent variable because at the population level we can writeεi = Yi − (α + β1Xi 1 +
β2Xi 2 + · · · + βK Xi K). Thus, the disturbance is a function of observed variables
only and hence does not satisfy Bentler’s definition of a latent variable.6 Alterna-
tively, if we consider the components in Equation 6, each component of the dis-
turbance would be a latent variable according to Bentler’s definition, even though
their sum,εi, would not be.

The sample realizations definition would qualifyεi as a latent variable in that we
do not have sample realizations in our sample data. We can estimate it as discussed
below, but the estimates are not direct realizations of the random disturbance.

Viewing the disturbance,εi, as a latent variable provides the opportunity to in-
troduce two issues common to all latent variables: identification issues and estimat-
ing values of the latent variable. Consider identification first. Every latent variable
must be assigned a scale and a mean. Neither of these are inherent to a variable
but instead are a matter of consensus among those working in an area. In the case
of the disturbance in multiple regression, the disturbance is implicitly scaled to
have the same units as the dependent variable,Yi. This follows because the implicit

6In a sample we have ˆεi , the sample residual, and do not have the population disturbance,
εi. From the perspective of the sample,εi is a latent variable because we cannot determine
its exact value without the population regression coefficients (βks). Bentler (1982) does not
make this distinction and considers the disturbance not to be a latent variable.
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coefficient forεi is 1. Thus, a one-unit shift inεi leads to a one-unit shift inYi,
holding constant theXs.7 The disturbance metric matches that ofYi. The mean of
εi is set to zero (E(εi) = 0). If we failed to make these assumptions, the multiple
regression model would be underidentified and we would not be able to find unique
values for at least some of the regression parameters. Even with these scaling as-
sumptions, a multiple regression model is not identified. To identify it, we make
another assumption about the latent variable,εi. We assume that the disturbance is
uncorrelated with theXs. Thus, using the sample realizations definition of a latent
variable, the most widely used statistical procedure in the social and behavioral
sciences, makes use of a latent variable called a disturbance and makes a number
of assumptions about its behavior (coefficient of 1,E(εi ) = 0, COV(Xik, εi ) = 0
wherei = 1, 2, 3, . . . N, k = 1, 2, . . . , K ).

A second issue that commonly accompanies the use of latent variables is at-
tempts to estimate the values of the latent variable by using weighted combinations
of the observed variables. This is linked to the issue of latent variable indetermi-
nancy. In the case of multiple regression, “residuals” is a common name for the
estimate of the disturbance,εi. The most widely used estimate of the disturbance
latent variable is

ε̂i = Yi − (α̂ + β̂1Xi 1 + β̂2Xi 2 + · · · + β̂K Xi K ), 7.

where ε̂i contains the estimates ofεi, α̂ is the ordinary least squares intercept
estimator, and̂βk is the ordinary least squares estimator of the regression coeffi-
cients. It is important to remember that the sample residuals, ˆεi are not the same as
the latent disturbances,εi. Unless ˆα andβ̂k match their corresponding population
parameters, the sample residuals will not equal the population disturbances. As
I noted above, one condition that sometimes removes latent variable indetermi-
nancy is when the sample size,N, goes to infinity. In the above regression model,
asN → ∞, α̂ → α & β̂k → βk andε̂i → εi , and the indeterminancy is removed.
In practice, we have finite sample sizes so that at least some indeterminancy in the
values of the disturbances are present. Furthermore, we generally do not have the
information that would permit separate estimation of the three components ofεi

described above (εri, εoi, εmi). Their sum is estimated in ˆεi , but their components
remain indeterminant in a regression model even ifN → ∞.

Latent Variables in Limited Dependent-Variable Models

Multiple regression assumes that the dependent variable is continuous or nearly
so. Categorical dependent variables are common in the social and psychological
sciences and thus fall short of this assumption. Logistic and probit regression pro-
cedures permit noncontinuous dependent variables.Limited dependent-variable
modelsis another term that refers to such models with categorical or censored

7Below, we introduce the assumption thatεi is uncorrelated with theXs. Under this assump-
tion, we need not also assume that theXs are held constant.
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dependent variables (Maddala 1983, Long 1997). These models do not eliminate
the need for latent variables, and from one perspective they make further use of
latent variables than does the usual multiple regression. A convenient representa-
tion for limited dependent-variable models makes use of an equation that appears
quite similar to a multiple regression,

Y∗
i = α + β1Xi 1 + β2Xi 2 + · · · + βK XiK + εi , 8.

where we can define all variables the same as the preceding multiple regression
model except for the new symbol,Yi

*. Yi
* is a continuous unobserved variable that

has a linear relation to the explanatory variablesXik. The continuousYi
* is related

to the categorical observed dependent variable. The nature of the relation depends
on the nature of the observed categorical variable. For a dichotomous variable
Yi (= 1 or 0), the relation is

Yi =
{

1 if Y∗
i > 0

0 if Y∗
i ≤ 0

}
. 9.

This equation presents a threshold model where whenYi
* exceeds 0, the dichoto-

mous variable is one and whenYi
* is at or below zero, the dichotomous variable

is zero. The model assumes that underlying the dichotomous variable is a contin-
uous variable that determines the category of the observed dichotomous variable.
To illustrate, suppose the dichotomous variable asks whether a respondent agrees
or disagrees with the statement, “I feel that I am as good as others.” Though res-
pondents differ widely in their degree of agreement or disagreement, they are left
with only two options, agree or disagree. Equation 9 represents this as a thresh-
old model in which once the unobserved degree of agreement passes a threshold
of zero, the respondent will give an “agree” response. If they fall short of this
threshold, the response will be “disagree.” From one perspective, these thresh-
old models are a correction of the crude way in which the original data were
collected. From this viewpoint, the variables of interest are conceptualized as con-
tinuous, but the response format administered allows respondents to answer only
in a restrictive, dichotomous scale.8 In this formulation we have the disturbance,
εi, as an unobserved variable as in multiple regression, but we also haveYi

* as
an underlying variable. Theεi disturbance consists of the same components as in
multiple regression (εi = εri + εoi + εmi). Recall that in our discussion of multiple
regression the local independence, expected value, and nondeterminant function
of observed variables definitions would not classifyεi as a latent variable, and the
sample realization definition would treat it as latent. These same classifications
hold for this limited dependent variable model with one exception. The nonde-
terminant function of observed variables definition would now classifyεi as a
latent variable. The reason is that even knowing the population parameters for

8It is possible to represent the dichotomous model without using a latentYi
* variable (see

Long 1997 pp. 50–52).
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all coefficients in Equation 8, we still cannot writeεi as an exact function of ob-
served variables becauseYi

* is unobserved.9 The different definitions of latent
variables would classifyYi

* the same asεi: It is a latent variable according to the
sample realization and nondeterminant function of observed variable definitions,
but it is not according to the local independence and the expected value definitions.

To take things further we need to make further assumptions. We make the
same assumptions aboutεi as we did in multiple regression [coefficient of 1,
E(εi ) = 0, COV(Xik, εi ) = 0]. These assumptions are sufficient to provide us
with the mean ofY∗

i [E(Y∗
i ) = α + β1Xi 1 + β2Xi 2 + · · · + βK XiK ], but the vari-

ance ofY∗
i [VAR(Y∗

i ) = VAR(α + β1Xi 1 + β2Xi 2 + · · · + βK XiK) + VAR(εi )] re-
mains undetermined because we only can estimate the variance ofα + β1Xi 1 +
β2Xi 2 + · · · + βK XiK and cannot estimate the variance ofεi [VAR(εi )] and we need
both to get theVAR(Yi

∗). Strictly speaking, an assumption about the variance ofεi

would be sufficient to identify the variance ofYi
*. In practice, the most common

approach to defining the scale and variance ofYi
* is to assume that the disturbance

variable comes from a specific distribution. Ifεi comes from a standardized normal
distribution [εi ∼ N(0,1)], we have a dichotomous probit regression model. If we
assume thatεi comes from a standardized logistic distribution with a mean of zero
and a variance ofπ2/3, we are led to the dichotomous logistic regression model.
Either of these assumptions provide the information required to identify the mean
and scale for the two latent variables in the model,εi andYi

*.
This model is readily extended to ordinal outcome variables with more than

two categories. Here we would maintain Equation 8, but the equation linkingYi to
Yi

* becomes

Yi =



1 if −∞ < Y∗
i ≤ τ1

2 if τ1 < Y∗
i ≤ τ2

3 if τ2 < Y∗
i ≤ τ3

...
C − 1 if τC−2 < Y∗

i ≤ τC−1

C if τC−1 < Y∗
i ≤ ∞


, 10.

whereC refers to the total number of categories for the ordinal variable. The
model is similar to the binary outcome model in that we have a nonlinear relation
connecting the ordinal variable,Yi, to Yi

*, but it differs in that we have introduced
“thresholds,”τ j, that are the cutpoints to determine into which category of the
ordinal variable a case will fall. This model assumes that the value for the first
threshold (τ 1) does not differ across the individuals in a sample. Similarly, the
second threshold (τ 2) is constant over individuals, as are all other thresholds. Thus,

9Bentler’s (1982) nondeterministic function of observed variables was proposed for linear
structural equation models. The limited dependent variable models are nonlinear in the
relation between the categorical dependent variable and the continuous underlying one, so
his definition was not devised for such models.
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the thresholds are similar to the regression coefficients in that they are population
parameters that are the same for all cases in the sample.

As in the dichotomous case, we must ensure that it is possible to identify the
mean and variances of the latent variables ofεi andYi

*, but here we have the addi-
tional complication of identifying the thresholds. Like the dichotomous outcome
model, assuming thatεi is distributed as a standardized normal or standardized lo-
gistic variable will help to identify the means and variances of the latent variables,
but now we also need to make assumptions about the thresholds. The two most
common are to assume thatτ 1 is zero or to assume that the equation interceptα

is zero (see Long 1997, pp. 122–23). Either assumption in conjunction with the
other distributional assumptions will identify the mean and variances ofεi andYi

*

and the thresholds,τ j, in the model.
Limited dependent variable models such as these have been extended in a

number of directions including censored variable models in which the continu-
ous variable is directly observed for only part of its range and remains latent at
some minimum or maximum value. Furthermore, multiple regression type mod-
els are sometimes combined with limited dependent-variable models such as in
sample selectivity correction models (Heckman 1979, 1990; Greene 1997). From
the perspective of this article the key aspect of these limited dependent-variable
regression models is that they share with the usual multiple regression model the in-
clusion of unobserved variables. In addition to the unobserved disturbance random
variableεi, there is a random underlying substantive variable (Yi

*) that underlies
the dichotomous, ordinal, or censored observed variable. The definitions of latent
variables do not agree in classifying these variables as latent, and like multiple
regression, each unobserved variable must be scaled and given a mean to permit
identification of the model. Also similar to multiple regression, the explanatory
variables in the model are observed variables.

A difference from multiple regression emerges when one tries to estimate the
values of the unobserved variables. In multiple regression we could estimate the
latent disturbance,εi, asε̂i = Yi − (α̂ + β̂1Xi 1 + β̂2Xi 2 + · · · + β̂K XiK). Attempt-
ing an analogous procedure for the limited dependent-variable model would lead
to ε̂i = Y∗

i − (α̂ + β̂1Xi 1 + β̂2Xi 2 + · · · + β̂K XiK). Unfortunately we cannot cal-
culate this quantity becauseYi

* is latent and we have no value to substitute for it. We
can estimate the latent outcome variable,Yi

*, asŶ∗
i = (α̂ + β̂1Xi 1 + β̂2Xi 2 + · · · +

β̂K XiK) because we haveXiks and estimates ofβk. The squared multiple correlation
(R2) calculated as described in McKelvey & Zavoina (1975, pp. 111–12) provides
a measure of the “closeness” of this predicted latent variable toYi

*. The predicted
version of the latent variable,̂Y∗

i , should not be confused with the actual value
of the latent variable. Just asYi 6= Ŷi in a multiple regression with a continuous
outcome, we haveY∗

i 6= Ŷ∗
i in limited dependent-variable models because we

cannot perfectly predictYi
*. As theR2 goes to 1,̂Y∗

i goes toY∗
i and this is an ideal

condition under which the indeterminancy would disappear. Practice falls short of
this ideal, so the indeterminancy ofYi

* remains an issue.
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Latent Variables in Factor Analysis

The factor analysis model is one of the first procedures psychologists would think
of as a latent variable technique. Because factor analyses treat multiple indicators or
observed variables at the same time, the factor analysis model is usually presented
in a matrix form. However, I use a scalar form here because it helps point out the
similarities and differences of the factor analysis model to the multiple regression
and limited dependent-variable models of the prior sections (see section on general
structural equation models for matrix expressions for factor analysis as part of the
measurement model). Consider the equation for a single indicator from a factor
analysis model,

Y i = λ0 + λ1ξi 1 + λ2ξi 2 + · · · + λK ξiK + ui , 11.

whereYi is an observed variable or indicator for theith case,λ0 is an intercept
term,λk is the “factor loading” that gives the impact of thekth factor onYi, ξ ik is
thekth factor for theith case, andui is the “unique” variable or disturbance for the
ith case. Factor analysis breaks the unique variable into two components,

ui = si + ei , 12.

wheresi is the specific component andei is the random measurement error, each
of which is assumed to have a mean of zero and to be uncorrelated with each other
and with the underlying factors (Harman 1960, Lawley & Maxwell 1971, Mulaik
1972). The specific component captures the systematic unique aspect of a variable
that is uncorrelated with both the factors and with the random measurement error.

The factor analysis model (Equation 11) shares with multiple regression and the
limited dependent-variable models the use of unobserved disturbances. The fac-
tor model, like multiple regression, has an observed dependent variable, whereas
the limited dependent-variable model differs from both of these in its use of an
underlying continuous dependent variable. Factor analysis departs from all prior
models in its use of unobserved explanatory variables or “factors” as predictors
of observed variables. The variablesui, si, ei, andξ ik are continuous latent random
variables according to the sample realization and nondeterminant function defini-
tions. Onlyξ ik are latent variables according to the local independence definition,
provided that we have more than one indicator and that the correlation between
these indicators goes to zero once the factors are controlled.

The expected value definition is more complicated when applied to this model.
According to this definition, the expected value ofYi would define the latent variable
as

E(Yi ) = λ0 + λ1µξ1 + λ2µξ2 + · · · + λK µξK , 13.

whereµξk is the mean of theξ ik factor. Thus, according to the expected value
definition, the linear combination of the means of the factors would define a latent
variable, but each separateξ k factor would not be a latent variable.
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Each latent variable in the factor analysis model must be scaled. One way to
scale each factor is to set one of the factor loadings from the factor to an observed
variable to one. If for the same variable, we set the intercept to zero we also provide
a mean for the factor. In the case in which this observed variable has only one factor
influencing it, we get

Yi = ξi 1 + ui . 14.

We can say thatξ i1 has the same scale and origin asYi in the sense that a
one-unit change inξ i1 leads to an expected change of one inYi and the latent
and observed variable share the same mean (see Bollen 1989, pp. 307–11). An
alternative scaling is to standardize eachξ ik to a variance of one and a mean
of zero. Other combinations are possible, but each factor must have a scale and
an origin assigned. The unique component or disturbanceui requires the same
attention. Factor analysis models handle the scaling ofui by giving it an implicit
coefficient of one and setting its mean to zero.

Factor analysis provides a clear example of the distinction between thea priori
anda posteriori latent variables raised above. In exploratory factor analysis the
factors area posteriori latent variables, that is, the factors are derived from the
data rather than being defined before the analysis. Confirmatory factor analysis
comes closer to thea priori latent variables because the factors and their pattern of
loadings are determined prior to the data analysis. Thea posteriorilatent variables
from exploratory factor analysis are closely associated with the tendency to see
latent variables as hypothetical rather than real latent variables. This is easy to
understand because the factors extracted in exploratory factor analysis are created
by an algorithm and usually are only given “names” after extracted. This does
not imply that thea priori latent variables in confirmatory factors are uniformly
regarded as real.

As I discussed in the section on properties of latent variables, the indetermi-
nancy of latent variables is well known in the factor analysis literature. However,
under certain conditions the indeterminancy of a factor can in theory be removed.
For instance, the squared correlation,ρ2 (or “reliability coefficient”) between the
simple sum of indicators of a single factor and that factor is10

ρ2 =

(
J∑

j =1
λ j

)2

VAR(ξ1)(
J∑

j =1
λ j

)2

VAR(ξ1) +
J∑

j =1
VAR(u j )

. 15.

The j indexes the indicators of the latentξ1 factor, j = 1, 2, . . . , J, and each
indicator loads only onξ1 with a unique component that has a mean of zero and is
uncorrelated with all other unique components for the other indicators. With some

10This formula is derivable from Bollen (1980, p. 378) when there are no correlated errors
of measurement.
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algebraic manipulations, I rewrite Equation 15 as

ρ2 = 1

1 +

J∑
j =1

VAR(u j )(
J∑

j =1
λ j

)2

VAR(ξ1)

. 16.

This equation reveals thatρ2 goes to one and the factor indeterminancy is removed
when the second term in the denominator goes to zero. For instance, suppose that
the latent factor and all indicators are standardized to a variance of one and that
every indicator has a standardized factor loading of 0.7. Ten such indicators would
result in aρ2 of 0.94 for their simple sum; 50 indicators would have a squared
correlation of 0.99. Of course, the rate of growth in the squared correlation and
hence in lessening indeterminancy depends on the magnitude of the factor loadings
and errors in addition to the number of indicators, but this example illustrates how
increasing the number of indicators (K → ∞) of a single factor can reduce indeter-
minancy. See Piaggio (1931, 1933), Mulaik & McDonald (1978), and McDonald &
Mulaik (1979) for further discussion of the relation between the number of indi-
cators and indeterminancy of factor scores in exploratory factor analysis.

Latent Curve Models

Latent curve models apply to longitudinal data in which repeated measures are
available for the same cases (e.g., Tucker 1958, Meredith & Tisak 1990, McArdle
& Hamagami 1991, Willett & Sayer 1994). Though it is possible to formulate these
models for categorical outcomes, I limit the discussion to continuous repeated
measures. The equations for an unconditional latent curve model are

Yit = αi + βi λt + εi t , 17.

αi = µα + ζαi , 18.

βi = µβ + ζβi , 19.

wherei = 1, 2, . . . , N indexes individuals,t,= 0, 1, . . . , T indexes time,αi is
the intercept for theith case,β i is the slope of the trajectory for theith case,λt =
0, 1,. . . , T is a time trend variable,εit is a disturbance for theitth observation,µα

andµβ are the means of the intercepts and slopes, andζ αi andζ β i are disturbances.
All disturbances are scaled by setting their means to zero and their coefficients to
one in the equation in which they appear. By assumption,εit is uncorrelated with
αi, β i, ζ αi, andζ β i.

The latent curve model departs from the others we have considered in that the
random coefficients,αi andβ i are unobserved variables. From the perspective of
the local independence definition, these are latent variables as long as we have at
least two waves of data for theYs, though we generally require at least three waves
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of data to identify the model. Similarly, they are latent variables applying the other
definitions. This is straightforward for these definitions except for the expected
value one. To discuss the expected value definition further, consider the equation
for Yi1,

Yi 1 = αi + εi 1. 20.

Note the similarity of this equation to the true score Equation 4. If we could
repeatedly observeYi1 in the sense that I discussed under the expected value defi-
nition, then the expected value ofYi1 would beαi, whereαi is a constant intercept
for theith case.11 An analogous argument holds forβ i if we use the trick of taking
difference scores,

Yi 2 − Yi 1 = (αi + βi + εi 2) − (αi + εi 1) 21.

= βi + (εi 2 − εi 1). 22.

Using difference scores (Equation 22) appears to be in a form that conforms to the
expected value definition of a true score or latent variable. However, one compli-
cation is that the errors of measurement for Equations 20 and 21 are correlated,
and this violates one of the assumptions for the expected value definition of latent
variables. Thus, these only partially satisfy the expected value definition of latent
variables, and under the strict definition these would not be latent variables.

The disturbance terms,εit, ζ αi, andζβ i, are not latent variables according to two
definitions. More specifically, only the nondeterministic function and sample real-
izations definitions would classify these as latent, whereas the local independence
and expected value definitions would not. These disturbances and the random
coefficients would all bea priori in that they are hypothesized prior to the data
analysis.

Item Response Theory

Item response theory (IRT) refers to a collection of related techniques that have
wide application in psychological measurement (see, e.g., Lord 1980, Hambleton
& Swaminathan 1985). They are well suited to handle dichotomous or ordinal
observed variables. Though there are many different models for IRT, a simple one-
parameter logistic model for dichotomous variables can illustrate the key points
with respect to latent variables. We can write this model as

Pj (ξ ) = e(ξ−κ j )

1 + e(ξ−κ j )
, 23.

whereξ is the underlying “ability” variable,e is the mathematical constant,κ j the
item difficulty parameter,j indexes the item (or observed dichotomous variable),
and Pj(ξ ) is the probability that an itemj is correct at abilityξ . κ j is the item

11This is different than taking the expected value of the random intercepts over all individ-
uals. In this case the expected value over individuals would beµα.
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difficulty parameter because the higher its value, the more difficult (i.e., the lower
the probability) it is to get a “correct” response to an item. The probability of a
correct response for two different items will differ even if the latent variable is at
the same value if the item difficulty parameters differ. These models are similar
to the limited dependent-variable model in that the observed outcome variable is
categorical, but it departs from these models in having an unobserved determinant
of the outcome.

Given the nonlinear function connecting the dichotomous item and the under-
lying variable,ξ would not qualify as a latent true score according to the expected
value definition.ξ is not a deterministic function of the observed variables, so
this definition of a latent variable would be satisfied with the qualification that the
nondeterministic function definition was proposed for linear models. However, the
local independence definition of a latent variable is key to IRT, so according to this
definition,ξ would be a latent variable provided we have at least two items for the
same latent variable. Similarly, the sample realization definition would be satisfied
andξ would be latent by this definition as well. Identifying this model requires
that we scale and provide a mean for the latent variable. A common approach is
to set theξ variable’s mean to zero and its variance to one (Hambleton et al. 1991,
p. 42). Summing items provides a method to estimate the latent variable, but the
issue of latent variable indeterminancy remains. Increasing the number of items
that tap the unidimensional latent variable can increase the correlation between
the sum of the items and the latent variable, but in practice some indeterminancy
will persist. More complicated IRT models are available, but the classification of
variables as latent or not would follow a similar pattern as that described above.

Latent Class Analysis

In all of the models reviewed the unobserved explanatory variables have been
continuous even though the observed variables could be categorical or continu-
ous. In this section I briefly present a model in which both the underlying vari-
able and the observed variables are categorical variables. Lazarsfeld’slatent class
model(Lazarsfeld 1950, 1959; Anderson 1954, 1959; Lazarsfeld & Henry 1968;
Goodman 1978; Langeheine & Rost 1988; Heinen 1996) has considerable gen-
erality, but to simplify the presentation I only consider a situation in which there
are three dichotomous observed variables,X1, X2, andX3, and one dichotomous
underlying variable,ξ . The observed and underlying variable each have only two
possible values, 0 or 1. The fundamental equation of latent structure analysis is

P(X1 = c1, X2 = c2, X3 = c3) =
1∑

c=0

P(ξ = c)P(X1 = c1|ξ = c)

×P(X2 = c2|ξ = c)P(X3 = c3|ξ = c), 24.

whereP(.) refers to an unconditional probability,P(.|.) is a conditional probability,
c1, c2, c3, andc refer to the value of 0 or 1 forX1, X2, X3, or ξ . This equation
says that the unconditional probability of a triplet set of values (c1, c2, c3) for
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the three observed dichotomous variables (X1, X2, X3) is equal to the sum overc
of the unconditional probabilities of the latent variable being in thecth category
times the conditional probabilities for each of the observed variables given that
the underlying variable is in thecth category. Underlying this probability is the
assumption of local independence. That is, any association betweenX1, X2, and
X3 is due to their common dependence onξ . Within categories ofξ the observed
dichotomous variables are independent.

It is not surprising to find that the latent class model conforms to the local
independence definition of a latent variable so that using it, we can refer toξ

as a latent variable. The sample realization definition of latent variables would
also treatξ as a latent variable because there are only indicators of it but no
direct observations. The nondeterministic function definition was intended for
linear structural equation models, but in general we cannot writeξ as an exact
function of the dichotomous observed variables so it would be latent. In contrast,
the expected value definition would not classifyξ as latent.

Analogous to factor analysis, botha posteriori anda priori latent variables
might appear in latent class analysis. It depends on whether the latent variables
are hypothesized before or after the data analysis. Furthermore, indeterminancy of
the latent class is an issue, and again, like factor analysis, the number of indicators
with properties that conform to the model can lessen the degree of indeterminancy.

Structural Equation Models with Latent Variables

Structural equation models are widely used in psychology and the social sciences.
In their most general form they include most of the models from the previous
sections (Goldberger & Duncan 1973; J¨oreskog 1977; Bentler & Weeks 1980;
Muthén 1984; Bollen 1989, 1998; Muth´en & Muthén 2001). A slight modification
of the LISREL notation presents the model as12

η = αη + Bη + 0ξ + ζ 25.

Y = αY + 3Yη + ε 26.

X = αX + 3Xξ + δ. 27.

Equation 25 is the latent variable model whereη is a vector of latent endogenous
variables withB a matrix of regression coefficients for the impact of the latent
endogenous variables on each other,ξ is the vector of latent exogenous variables
withΓa matrix of regression coefficients for the latent exogenous variable’s impact
on the latent endogenous variables,αη is a vector of equation intercepts, andζ
is the vector of latent disturbances that have a mean of zero and are uncorrelated
with ξ. Equations 26 and 27 are the measurement model equations in which the

12To simplify the discussion, I only present this model for the continuous latent and observed
variables. For a discussion of extending this model to categorical variables, see the more
recent references cited in the previous sentence.

A
nn

u.
 R

ev
. P

sy
ch

ol
. 2

00
2.

53
:6

05
-6

34
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 C

A
R

N
E

G
IE

-M
E

L
L

O
N

 U
N

IV
E

R
SI

T
Y

 o
n 

01
/2

6/
06

. F
or

 p
er

so
na

l u
se

 o
nl

y.



19 Nov 2001 10:17 AR AR146-22.tex AR146-22.SGM ARv2(2001/05/10)P1: GNH

LATENT VARIABLES 629

former relatesY, a vector of observed variables, toη via a coefficient matrix
of factor loadings,ΛY, αY is a vector of equation intercepts, andε is a vector of
unique components that have a mean of zero and are uncorrelated withη, ξ, andζ.
Equation 27 is similarly defined as the indicators for theξ latent variables. Each
equation alone can represent a factor analysis model (Bollen 1989, Ch. 7). As such
our previous discussion of the classification of variables as latent or not accord-
ing to the different definitions of latent variables carries over. Becauseη andξ
are classified as latent variables via these measurement models (Equations 26 and
27), the only unconsidered unmeasured variable isζ, but the classification of this
variable closely follows the previous discussion of disturbances as latent variables.

DISCUSSION AND CONCLUSIONS

One clear conclusion from this review is that whether we consider a variable latent
or not depends on the definition we use. Table 1 summarizes the classifications
of the major unmeasured variables that appear in the different statistical models
reviewed in this paper. It classifies them as latent according to four definitions of
latent variables: local independence, expected value, nondeterminant function, and
sample realization definitions. Table 1 reveals that the most inclusive definition is
the sample realization definition, closely followed by the nondeterminant function
definition. The local independence is perhaps the most common definition of la-
tent variables, yet Table 1 shows it to be fairly restrictive, only exceeded by the
restrictiveness of the expected value definition. The other three definitions of latent

TABLE 1 Summary classification of latent variables in statistical models

Definition

Local Expected Nondeterministic Sample
Model independence value function realization

Multiple regressionεi No No No Yes

Limited dep. var.Y∗
i, εi No No Yes Yes

Factor analysisui, ξ ik ui No, No Yes Yes
ξ ik Yesa

Latent curveαi, β i Yesa Partiallyb Yes Yes
εit, ζ αi, ζ β i No No Yes Yes

Item response theoryξ Yesa No Yes Yes

Latent classξ Yesa No Yes Yes

Structural equations η, ξ sometimes No Yes Yes
η, ξ , ζ , ε, δ ζ , ε, δ no

aAssumes that error terms are uncorrelated.
bErrors for observed variables are correlated contrary to expected value definition, though they otherwise conform. See
text.
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variables are restrictive forms of the sample realization definition. For instance, if
we use the sample realization definition and impose the restriction that the observed
variables be independent once the latent variables are controlled, we are led to the
local independence definition. The nondeterminant function definition is less re-
strictive than the local independence and expected value definitions. One of its lim-
itations is that it was devised for linear structural equations, whereas there are other
models in which latent variables appear that would not be covered by this definition.

Though the local independence and the expected value definitions are useful in
some contexts, they lead to counterintuitive classifications of variables as latent
or not. For instance, the local independence and expected value definitions do not
classify disturbances as latent variables. In contrast, Arbuckle & Wothke (1999)
refer to disturbances as latent variables. Griliches (1974, pp. 976–77) classifies
disturbances as one of the three types of latent (“unobservables”) variables.

A similar problem occurs in any factor analyses or structural equation models
with correlated errors of measurement. The local independence definition would
not be satisfied. An example is where we have a single factor with four indicators
and correlated errors between the second and third indicators. If the correlated
errors were absent, the factor would satisfy the local independence definition for a
latent variable. Or I could replace the correlated errors with a single unmeasured
variable, uncorrelated with the other factor, with factor loadings fixed to one for the
second and third measures. Now both factors would qualify as latent. However, it
seems counterintuitive to consider the underlying variable in the model not latent
when there are correlated errors, but latent when the correlated errors are replaced
with an additional factor.

Higher order factors would be excluded as latent variables with the expected
value definition, but these hold an ambiguous status with the local independence
definition. If we consider that the indicator variables are uncorrelated once we con-
trol for all first order factors, then the higher order factor seems not needed and its
status as a latent variable is ambiguous with the local independence definition. This
is true even though the first order factors from the same model satisfy the local in-
dependence definition when the errors are uncorrelated. Similarly, the unmeasured
variable influenced by causal indicators would not be latent according to the local
independence definition unless it had at least two effect indicators with uncorre-
lated errors of measurement. As in the case of disturbances, the sample realization
definition would treat the underlying variables as latent in all of these examples.

What explains these different definitions of latent variables? Part of the explana-
tion is that the definitions emerged from different statistical models. For instance,
the expected value definition came out of the classical test theory, whereas the local
independence definition has roots in latent class and factor analysis. The nondeter-
ministic function of observed variables originates with linear factor analysis and
structural equation models. The sample realization definition proposed here was
the most inclusive definition because the only requirement is that there is not a
sample realization of a variable for a case in a given sample. It is not based on any
one of these statistical models but attempts to apply to all of them.
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An advantage of the sample realization definition is that it helps make connec-
tions between underlying variables in a variety of models and applications. For
instance, the distinction betweena posteriorianda priori latent variables holds
for all such variables. Issues of identification and scaling are common across these
unmeasured variables, as is the problem of latent variable indeterminancy. We also
need to decide on the direction of influence between the manifest and latent vari-
ables, that is, are there causal indicators or effect indicators? As this review reveals,
most attention is directed toward effect indicators, but the sample realization defi-
nition holds for unmeasured variables whether there are causal or effect indicators.

In conclusion, there is no right or wrong definition of latent variables. It is
more a question of finding the definition that is most useful and that corresponds
to a common understanding of what should be considered latent variables. If we
stick with the conventional dichotomy of variables being either latent or observed,
several interesting questions are posed for the most restrictive definitions. For
instance, the factors in a factor analysis model with correlated errors are not latent
variables according to the local independence and expected value definitions. They
certainly are not observed variables, so what types of variables are they if not latent
or observed? Similarly how do we classify disturbances or errors? If we wish to add
additional categories of variables beyond latent and observed, what do we gain by
creating these new categories? Also, do we miss common properties of variables
across these categories by giving them distinct names? These are questions that
must be answered if we use the more restrictive definitions of latent variables.

ACKNOWLEDGMENTS

Partial support for this research comes from NIDA grant DA13148. I am grateful for
the comments and help from the Carolina Structural Equation Modeling (CSEM)
group, the SEMNET Listserv, Denny Borsboom, Susan Fiske, Jennifer Glanville,
and Keith Markus. An earlier version of the paper was presented at the International
Meeting of the Psychometric Society, July, 2001, Osaka, Japan.

Visit the Annual Reviews home page at www.AnnualReviews.org

LITERATURE CITED

Anderson TW. 1954. On the estimation of pa-
rameters in latent structure analysis.Psy-
chometrika19:1–10

Anderson TW. 1959. Some scaling methods
and estimation procedures in the latent class
model. InProbability and Statistics, ed. U
Grenander, pp. 9–38. New York: Wiley

Arbuckle J, Wothke W. 1999.Amos 4.0. Chi-
cago: Small Waters

Bannock G, Baxter RE, Davis E. 1998.Pen-

guin Dictionary of Economics. New York:
Penguin

Bartholowmew DJ. 1987.Latent Variable Mod-
els and Factor Analysis. London: Griffin

Bartholowmew DJ. 1996. Comment on:
metaphor taken as math: indetermimacy in
the factor model.Multivariate Behav. Res.
31:551–54

Bartlett MS. 1937. The statistical conception of
mental factors.J. Psychol.28:97–104

A
nn

u.
 R

ev
. P

sy
ch

ol
. 2

00
2.

53
:6

05
-6

34
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 C

A
R

N
E

G
IE

-M
E

L
L

O
N

 U
N

IV
E

R
SI

T
Y

 o
n 

01
/2

6/
06

. F
or

 p
er

so
na

l u
se

 o
nl

y.



19 Nov 2001 10:17 AR AR146-22.tex AR146-22.SGM ARv2(2001/05/10)P1: GNH

632 BOLLEN

Bentler PM. 1982. Linear systems with mul-
tiple levels and types of latent variables. In
Systems Under Indirect Observation, ed. KG
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