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Bayesian Analysis of Binary and
Polychotomous Response Data

JAMES H. ALBERT and SIDDHARTHA CHIB*

A vast literature in statistics, biometrics, and econometrics is concerned with the analysis of binary and polychotomous response
data. The classical approach fits a categorical response regression model using maximum likelihood, and inferences about the model
are based on the associated asymptotic theory. The accuracy of classical confidence statements is questionable for small sample sizes.
In this article, exact Bayesian methods for modeling categorical response data are developed using the idea of data augmentation.
The general approach can be summarized as follows. The probit regression model for binary outcomes is seen to have an underlying
normal regression structure on latent continuous data. Values of the latent data can be simulated from suitable truncated normal
distributions. If the latent data are known, then the posterior distribution of the parameters can be computed using standard results
for normal linear models. Draws from this posterior are used to sample new latent data, and the process is iterated with Gibbs
sampling. This data augmentation approach provides a general framework for analyzing binary regression models. It leads to the
same simplification achieved earlier for censored regression models. Under the proposed framework, the class of probit regression
models can be enlarged by using mixtures of normal distributions to model the latent data. In this normal mixture class, one can
investigate the sensitivity of the parameter estimates to the choice of “link function,” which relates the linear regression estimate to
the fitted probabilities. In addition, this approach allows one to easily fit Bayesian hierarchical models. One specific model considered
here reflects the belief that the vector of regression coefficients lies on a smaller dimension linear subspace. The methods can also be
generalized to multinomial response models with J > 2 categories. In the ordered multinomial model, the J categories are ordered
and a model is written linking the cumulative response probabilities with the linear regression structure. In the unordered multinomial
model, the latent variables have a multivariate normal distribution with unknown variance-covariance matrix. For both multinomial
models, the data augmentation method combined with Gibbs sampling is outlined. This approach is especially attractive for the
multivariate probit model, where calculating the likelihood can be difficult.

KEY WORDS: Binary probit; Data augmentation; Gibbs sampling; Hierarchical Bayes modeling; Latent data; Logit model; Mul-

tinomial probit; Residual analysis; Student-¢ link function.

1. INTRODUCTION

Suppose that V independent binary random variables Y,
..., Ynyare observed, where Y, is distributed Bernoulli with
probability of success p;. The p; are related to a set of co-
variates that may be continuous or discrete. Define the binary
regression model as p; = H(x'B8),i=1,..., N, where 8
is a k X 1 vector of unknown parameters, x/ = (x,;, .. .,
X, ) 1s a vector of known covariates, and H( ) is a known
cdf linking the probabilities p, with the linear structure
x7 8. The probit model is obtained if H is the standard
Gaussian cdf, whereas the logit model is obtained if H is the
logistic cdf. (For general discussions of this class of models,
see Cox 1971, Finney 1947, Nelder and McCullagh 1989,
and Maddala 1983.)

Let w(B8), a proper or improper prior density, summarize
our prior information about 8. Then the posterior density
of B is given by

(8 |data)

__ m™B) I H(x7 8)" (1 — H(x] B))'™ (1)

[ =B 1, H(xT 8" (1 — H(x[B))' ™ dB’
which is largely intractable. Letting Ni(u, Z) denote the k-
variate multivariate normal distribution with mean p and
variance-covariance matrix ¥, the usyal as_ymptotic approx-
imation is that 8 is distributed Ny (8, I(8)~'), where 8 is
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the posterior mode and I(B) is the negative of the second
derivative matrix evaluated at the mode. When a uniform
prior is chosen for 3, 8 is the maximum likelihood estimate
(MLE) and I( ) is the observed information matrix. From
a non-Bayesian viewpoint, Griffiths, Hill, and Pope (1987)
found the MLE to have significant bias for small samples.
Zellner and Rossi (1984), from a Bayesian approach, also
commented on the inaccuracy of the normal approximation
for small N. For a small number of parameters, they sum-
marized the posterior using numerical integration. For large
models (k large), they computed posterior moments by
Monte Carlo integration with a multivariate Student’s ¢ im-
portance function.

In this article we introduce a simulation-based approach
for computing the exact posterior distribution of 8. Suppose
that the link function H is the standard Gaussian cdf (the
probit case). The key idea is to introduce N independent
latent variables Z,, ..., Zy into the problem, where Z, is
distributed N(x7 8, 1), and define ¥, = 1 if Z, > 0 and Y,
= 0if Z; < 0. Observe that if the Z, are known and a mul-
tivariate normal prior is chosen for 3, then the posterior
distribution for 8 can be derived using standard normal linear
model results. The Z, are of course unknown; however, given
the data Y,, the distribution of Z, follows a truncated normal
distribution. These principal observations, combined with
the tool of Gibbs sampling, allow us to simulate from the
exact posterior distribution of 8. This approach is very similar
to the data augmentation/Gibbs sampling framework used
in censored regression models (Chib 1992; Wei and Tanner
1990).
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This approach connects the probit binary regression model
on the Y; with a normal linear regression model on the latent
data Z;. This framework also permits us to elaborate the
probit model by using mixtures of normal distributions to
model the latent variables. In Section 3 we use this device
to model binary data using a ¢ link function. Application of
this link family in an example in Section 5.2 suggests that
inferences can be sensitive to the choice of link function.
(See Carlin and Polson 1991 for a similar use of mixtures of
normal distributions in modeling the sampling density.) Our
framework also makes it easy to model uncertainty about a
particular probit model by means of a hierarchical normal
linear structure on 3. In the example of Section 5.2, we use
this model to check the hypothesis that some covariates may
be removed from the model with little change in the fit.

The sampling approach allows one to compute marginal
posterior distributions of many parameters of interest. As
an illustration, in Section 5.2 we compute the set of posterior
distributions of the residuals y; — x/ 8. For binary data, the
usual frequentist definition of residual can take on only two
possible values. In contrast, the Bayesian residual has a con-
tinuous distribution on an interval and thus can be more
informative than the usual frequentist residual in detecting
outliers.

In the preceding discussion we restrict the observation Y;
to two values. Suppose that Y; has J > 2 categories. In Section
4 we show how the preceding data augmentation/Gibbs
sampling strategy can be generalized to handle multinomial
data. In the first situation the categories are assumed ordered,
and the linear regression structure is linked to the cumulative
response probabilities. In the second case the categories are
unordered and linked to a multivariate normal structure on
the latent data. In each situation the Gibbs sampling algo-
rithm can be generalized straightforwardly to simulate from
the posterior distribution of the regression parameter of in-
terest.

This article is organized as follows. Section 2 outlines the
Gibbs sampling algorithm used in simulating the posterior
distributions. Section 3 discusses the binary regression models
based on normal and mixtures of normal linear models on
the latent data. Section 4 presents some analogous models
for multinomial response data. Section 5.1 uses the data set
of Finney (1947), with three covariates, as a benchmark to
compare the posterior densities with those computed using
numerical integration. Section 5.2 contains a detailed illus-
tration with a seven-covariate data set, which illustrates the
generalizations of the usual probit model. Section 5.3 sum-
marizes Bayesian calculations for the trivariate probit model
of Daganzo (1979). Finally, Section 6 presents some con-
cluding remarks.

2. THE GIBBS SAMPLER

In this section we review the Gibbs sampling algorithm
(Gelfand and Smith 1990) with a focus on its implementation
in the binary and polychotomous response models. One is
interested in simulating from the posterior distribution of 6
partitioned into the vector components § = (6, ..., 6,).
Although it may be difficult to sample from the joint pos-
terior, suppose that it is easy to simulate from the fully con-
ditional distributions m(0x|{6;, j # k}). To implement the
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Gibbs sampler, one starts with initial guesses of the §,—call
them 8, .. ., 09 —and then simulates in turn

o‘.” from (6,{6\,j+ 1})
85" from (6,10, {6, > 2})

0" from w(6,/{0%",j <p}). )

The c¥cle (2) is iterated ¢ times, generating the sample 9

. 0. As t approaches infinity, the joint distri-
butlon of 0 8 can be shown to approach the joint distribution
of 8. So for sufficiently large ¢, say 1*, 8" can be regarded
as one simulated value from the posterior of 6. Rephcatmg
this process m times gives the sample {(0(1’, ), 0(2'; y s
0 (")) j=1,...,m}, which can be used to compute posterior
moments and density estimates.

There are two practical drawbacks to this replication ap-
proach First, the method is inefficient, because the samples
{0 } for ¢ < t* are discarded. Second, after the initial run
it may be necessary to repeat the simulation with a larger
number of replications to get accurate density estimates. This
is unsatisfactory in that the observations in the initial run
are discarded.

Here we propose a “one-run” Gibbs sampling scheme,
suggested by Zeger and Karim (1991), that is efficient in that
few observations are discarded. Only one replication is used,
and the cycle (2) is run a large number of times, with the
sequence extended until convergence. It is difficult to make
general comments on the convergence behavior of this Gibbs
sample because, from our experience, it appears that the rate
of convergence depends on the particular application. But
we can make some comments on monitoring this one-run
method for the applications described in this article.

First, the general objective of the sampling is to collect a
sufficiently large number of values from the joint posterior
of 6 to obtain accurate estimates of marginal posterior den-
sities of subsets of 6 and posterior moments. One should
collect the values starting at the cycle ¢ where one believes
that 6 ” is approximately a simulated value from the posterior
of 6. In the examples presented here, the value of ¢ is small
(say 10-40) relative to the total number of values collected.
Thus one would get similar convergent behavior by collecting
all of the simulated values.

Second, there are typically strong positive correlations be-
tween the values 8 and 9 “*V. If one wishes to obtain an
approximate independent sample of the 8, the simulated
values of 6 could be collected at cycles ¢, ¢ + ny, ¢ + 2n,,
and so on, where n, is the spacing between cycles where
0” and 6*™ are believed to be approximately independent.
But it is not necessary to obtain an independent sample of
6 to obtain, say, a marginal posterior density estimate of .

One goal of this article is to obtain estimates of the densities
of the individual parameters or their functionals. Suppose
that the function g(6;) is of interest. One can estimate the
density of this function using a kernel density estimate of
the simulated values of g(6,){g(0{"),i=1,..., m}. Gel-
fand and Smith (1990) argued that a slightly preferable es-
timate of this marginal posterior density is given by
7(g(0)) ~ (1/m) 272 w(g(0)1 {0, r # k})). To detect
convergence of the Gibbs sample in practice, we collect values
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of 0 in batches of 100-200 until all the marginal density
estimates for the components of 8 stabilize.

A second goal is estimation of posterior expectations.
Suppose that the expectation of interest is E[g(0x)]. From
the simulated sample, this posterior expectation can be es-
timated by either the sample mean of { g(off)) } or the sample
mean of { E[g(0:)|{0:”, r # k}]}. In either case it will be
of interest to compute a simulation standard error for the
sample mean estimate. To compute this standard error from
this correlated simulation sample, we apply the well-known
batch means method (see, for example, Bratley, Fox, and
Schrage 1987). We batch or section the sample into subsam-
ples of equal size. When the lag one autocorrelation of the
batch means is under .05, the simulation standard error is
computed as the standard deviation of the batch means di-
vided by the square root of the number of batches.

The Gibbs sampler requires simulation from the p fully
conditional posterior distributions (2). In the applications
described here, these distributions are not all of standard
functional forms (e.g., multivariate normal, gamma) and can
be difficult to simulate. Devroye (1986) described some gen-
eral acceptance algorithms for sampling from nonconjugate
distributions. In the examples presented here, we use two
schemes that are easier to implement than those algorithms
and appear to work well in practice. Instead of sampling
from a continuous posterior density w(8), = is discretized
into k mass points of interest, and then (using inversion
techniques) the discretized version of = is sampled. By
choosing k sufficiently large, one can adequately approximate
many continuous densities. Alternately, one can approximate
7 by a matching normal distribution with the same mode
and curvature at mode as w and then sample from this nor-
mal distribution. This particular method may perform poorly
if o has tails significantly flatter than a normal distribution.
In this case one can approximate m by a matching ¢ distri-
bution or mixture of ¢ distributions. (See West 1992 for a
discussion of using mixtures of ¢ distributions in this context.)

3. DATA AUGMENTATION AND GIBBS SAMPLING
FOR BINARY DATA

3.1 Introduction

To introduce the data augmentation approach (Tanner
and Wong 1987), let H = ®, leading to the probit model.
Introduce N latent variables Z,, ..., Zy, where the Z; are
independent N(x7 8, 1), and define ¥; = 1 if Z; > 0 and
Y; = 0 otherwise. It can be easily shown that the Y; are
independent Bernoulli random variables with p; = P(Y; = 1)
= ®(x/ B).

The joint posterior density of the unobservables 8 and Z
=(Z,...,Zy)giventhe datay = (y1, ..., yn) is given by

N
(B8, Z|y) = Cx(B) [] {1(Z; > 0)1(y: = 1)
i=1
+ 1(Z; <0)1(y; = 0)}
X ¢(Z;xFB,1). (3)

In (3), ¢( ; u, ¢2) is the N(u, ¢2) pdf, 1(X € A) is the
indicator function that is equal to 1 if the random variable
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X is contained in the set 4, and C here and henceforth is a
generic proportionality constant. Note that this joint distri-
bution is complicated in the sense that it is difficult to nor-
malize and sample from directly. But computation of the
marginal posterior distribution of 8 using the Gibbs sampling
algorithm requires only the posterior distribution of 8 con-
ditional on Z and the posterior distribution of Z conditional
on B, and these fully conditional distributions are of standard
forms. First, note from (3) that the posterior density of 8
given Z is given by

N
w(Bly, 2) = Cx(B) [I #(Zi; x[ 8, 1).

i=1

C))

This fully conditional posterior density is the usual posterior
density for the regression parameter in the normal linear
model Z = XB + e, where X = (x7, ..., x¥) T and ¢ is
distributed Nx(0, I), where I is the identity matrix. Using
standard linear model results, if a priori the distribution of
B is diffuse, then

Bly, Z is distributed Ni(Bz, (X"X)™), (5)

where Bz = (X7X ) !(X”Z). If 8 is assigned the proper con-
jugate N(B8*, B*) prior, then the posterior distribution of 8
given Z is Ni(8, B), where the posterior mean and covari-
ance matrix are given by § = (B*~! + X7X) '(B*"!8*
+X7Z) and B = (B*~! + X"X)™'. Next, note from (3)
that the posterior distribution of Z, conditional on 8, also

has a simple form. The random variables Z,, ..., Zy are
independent with
Z;|y, 8 distributed N(x/ 8, 1)
truncated at the left by O ify;, =1
Z;|y, B distributed N(x/ 8, 1)
truncated at the right by 0 ify; =0. (6)

In practice it is customary to assign a flat noninformative
prior to 8. Given a previous value of 8, one cycle of the
Gibbs algorithm would produce Z and 8 from the distri-
butions (6) and (5). The starting value of 8, 8@ may be
taken to be the maximum likelihood (ML) estimate, or al-
ternatively the least squares (LS) estimate (X'X )~!X'y. Note
that it is computationally easy to simulate from both the
multivariate normal distribution (5) and the truncated nor-
mal distributions in (6) (see Devroye 1986 for simulation
algorithms).

3.2 Thet Link

By introducing the Z;’s into the model, the probit regres-
sion model on the Bernoulli observations Y is seen to have
an underlying normal regression on Z. Since the posterior
distribution of 8 given Z is multivariate normal, it is possible
to generalize this model by applying suitable mixtures of
normal distributions.

For example, one can generalize the probit link by choos-
ing the link cdf H to be the family of ¢ distributions. This
generalization allows one to investigate the sensitivity of the
fitted probabilities to the choice of link function. In addition,
one can see which value of the ¢ degrees of freedom parameter
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is best supported by the data. The most popular link function
for binary data is the logit, which corresponds to a choice of
a logistic distribution for H. Figure 1 plots quantiles of the
logistic distribution against quantiles of a ¢ distribution for
various degrees of freedom. Note that, for probabilities be-
tween .001 and .999, logistic quantiles are approximately a
linear function of #(8) quantiles. This statement is consistent
with Mudholkar and George’s (1978) result that the logistic
distribution has the same kurtosis as a ¢ distribution with 9
df. Thus, approximately, one can view the logistic distribu-
tion as a member of the ¢ family. The connection between
the logistic and ¢ links will be further explored in the example
in Section 5.2.

Let the Z; be independently distributed from ¢ distributions
with locations x] 8, scale parameter 1, and degrees of free-
dom ». Equivalently, with the introduction of the additional
random variable A;, we write the distribution of Z; as the
following scale mixture of a normal distribution: Z; |}; is
distributed N(x/ B8, \;'') and ); is distributed Gamma (»/
2, 2/v) with pdf proportional to X!/~ 'exp(—w);/2).

Suppose a uniform prior is chosen for the regression pa-
rameter 8. Let A = (XA, ..., Ay) be the vector of scale pa-
rameters. Then the posterior density for Z, A\, 8, and v is
given by

N
m(Z, \, B, v|y) = Cx(v) [T {1(Z; > 0)1(Y; = 1)
i=1
+ 1(Z; <= 0)1(Y; = 0)}V\; /27
X exp(—N\i/2(Z; — x] B)})c(v)N/> e ™), (7)
where ¢(v) = [T(v/2)(v/2)*/?]7" and =(») is the prior on
v. In this case the unknown vector 6 = (Z, X\, 8, v). The
fully conditional distributions of 8, Z, X and v are given

below:
* Bly, Z, \, v is distributed Ny(Bz,(X'WX)™!), where

Bzxr=(X'WX)'X'WZ and W = diag(}\;). (8)

« The fully conditionally distributions of Z,, . . ., Zy are
independent with
Z:|y, 8, \, v distributed N(x7 8, \;/')
truncated at the left by 0 ify; = 1
Z:ly, B, \, v distributed N(x7 8, \/1)
truncated at the right by 0 ify; =0 (9)
* A, ..., Avly, Z, 8, v are independent with
- v+1 2
A; distributed Gamma ( 2 vt (Z —xT 5)2) .
(10)
* v|y, Z, B, X is distributed according to the pdf propor-
tional to
N
w(v) [ (c(v) N3t e N2y, an

i=1

To implement the Gibbs sampler, we start with 3 equal
to the least squares estimate under the probit model, set A,
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tquantile

logistic quantile

Figure 1. Plot of Logistic Quantiles Against t Quantiles for Probabilities
Between .001 and .999. The solid line is v = 4, the dashed line is v = 8,
and the dotted line is v = 16.

=1 for all 7, and cycle through the conditional distributions
(9), (8), (10), and (11), in that order. The only difficult dis-
tribution to simulate from is the fully conditional distribution
of the degrees of freedom v. But because we are interested
in the posterior probabilities for v in a finite set, it is then
easy to simulate from the discrete distribution (11).

Suppose that one is interested in making inferences
about the regression vector 8 and the probabilities {p;}.
The posterior for 8 is approximated by #(8) ~ (1/m)
X Zm (B Z D, \D), where (8| Z, \) is the multivariate
normal posterior density (8). To obtain a posterior den-
sity estimate for the probability p;, first note that p;
= ®(M/*x¥B). Then, by a transformation of the condi-
tional density of 8, the density estimate of the probability is
givenby 7 (pr) = (1/m) 27 (2" (Pr); 1, %)/ (27 (1);
0, 1), where ¢( ; p, o?) is the N(g, o?)
pdf, p = VAPxT 24 and o7 = MOx[(X'WX)'x.

3.3 Hierarchical Analysis

The normal regression structure on Z also motivates the
consideration of normal hierarchical models as presented in
Lindley and Smith (1972). Given a particular probit model
and regression parameter 3 of dimension k, one may suspect
that 8 lies on a linear subspace AB°, where 8° is p-dimen-
sional, where p < k. (Alternately, one may believe that the
regression parameter satisfies the (k — p)-dimensional sub-
space restriction 8 = 0. This prior belief may be reexpressed
in the above form.) This prior belief can be modeled by the
hierarchical model

(1) Z is distributed N(Xg8, 1),

(2) B is distributed N(AB°, ¢2I), and

(3) (B°, o?) is distributed according to the prior density
(8%, o?). (12)

In usual practice, the hyperparameters 8° and ¢2 are assumed
independent with 3° assigned a uniform prior and o2 given
a noninformative prior (in Section 5.2, we assume that
log o2 is uniform distributed). The focus of posterior infer-
ences is on the prior variance ¢2 and the regression vector
B. Note that o2 reflects the precision of the prior belief that
@ lies on the linear subspace. After data is observed, the pos-
terior distribution of o2 is informative about the goodness
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of fit of the reduced model. The posterior density of the
regression vector 8 compromises between least squares es-
timates from the ““full” k-dimensional model 8 and the “re-
duced” p-dimensional model where 8 = AS°.

The fully conditional distribution of the latent data Z is
given by (6). One can use standard theory for the normal
hierarchical model (Lindley and Smith 1972) to obtain the
posterior distributions of 8 and ¢ conditional on the latent
data Z. (Note that these distributions are marginal posterior
distributions with the hyperparameter 8° integrated out.)
Specifically, we have that

» B|Z, o is distributed N,(u, V), where
=W +(1—W,)Ab,
0, = (X"X)'X"Z
b, = [ATXT(I + XXT62)"'XA]'ATXT
X (I+ XX762)"'Z
W, = [X'X + I/¢%]7'X"X
V= ((1I—-W)A)[ATXT(I + XX762)"'XA]™!

X((XT—=W)A) T+ [XTX +1/62]7" (13)
« 02|Z is distributed according to the density proportional
to
I+XXT 2y—111/2
(2 o)

|ATXT(I + XX70?) XA ['/2
1 a
X exp[— 5 Q(Z, XAb,, (1+ XXTJZ)]W(JZ), (14)

where Q(Z, u, ) = (Z — w)T 2 Y(Z — p) and ¢(Z) is a
proportionality constant.

To implement the Gibbs sampler, one starts with initial
guesses at @ and o2, simulates the Z; from (6), and then
simulates @ and ¢ from the distributions (13) and (14). The
fully conditional posterior density of o2 is not of a convenient
form for simulation. However, as in the z-link example, if
we place all of the prior probability on a grid of ¢ values,
it is easy to simulate from the discrete posterior density (14).

4. GENERALIZATIONS TO A MULTINOMIAL
RESPONSE

4.1 Ordered Categories

Suppose that Yy, ..., Yy are observed, where Y, takes
one of J ordered categories, 1, ..., J. Letting p;; = P[Y;
= j], we define the cumulative probabilities n; = 2%~ pj,
j=1,..., J— 1. Then one popular regression model for
the {p;} (Aitchison and Silvey 1957; Gurland et al. 1960;
McCullagh 1980; McKelvey and Zavoina 1975) is given by
n;=®(y,—x7B),i=1,...,N,j=1,...,J— 1.One can
motivate this model by assuming that there exists a latent
continuous random variable Z, distributed N(x/ 8, 1), and
we observe Y;, where Y; = jif v, < Z; < v; (we define v,
= —oo0 and y; = oo0). This problem is a normal regression
problem where the response is in the form of grouped data.

In the preceding model, the regression vector 8 and the
bin boundaries v, ..., vv,_; are unknown. To ensure that
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the parameters are identifiable, it is necessary to impose one

restriction on the bin boundaries; without loss of generality,

we take v, = 0. The joint posterior density of 8 and v = (-,
.., Ys—1) is then given by

N J
(B, vly) = Cr(B, V) [ X 1(yi =))
i=1 j=1

X [®(v; = X7 B) — ®(v,-1 —x[ B)], (15)

where 7(B, v) is the prior. As in the two category case dis-
cussed earlier, it is straightforward to find the posterior mode
of (B, ) using Newton—-Raphson and to obtain approximate
posterior standard deviations of (8, ) using the second de-
rivative matrix of the log posterior evaluated at the mode.

The Gibbs algorithm for the binary case described in Sec-
tion 3.1 can be generalized to this situation. We introduce
the unobserved latent variables Z;, ..., Zy defined previ-
ously and simulate values from the joint posterior distri-
bution of (8, v, Z). If we assign a diffuse prior for (8, v),
then this joint posterior density is given by

N
(B, v, Zly)=C]] [ V1/2mw exp(—(Z; — x[ 8)*/2)
i=1

7
X[Z (Y =)1(vj-1 < Z; <7j)”- (16)

Jj=1

The posterior distribution of 8 conditional on y and Z is
given by the multivariate normal form (5). The fully con-
ditional posterior distributions of Z,, . .., Zy are indepen-
dent with

Z:|8, v, y, = j distributed N(x/ 8, 1)

truncated at the left (right) by v,—;(v;). (17)

Finally, the fully conditional density of v, given Z, y, 8 and
{¥k, k # j} is given (up to a proportionality constant) by

N
H MY =)Dl(v-1<Z < v,)

i=1

1Y, =)+ DIy, <Z <v:1)]. (18)

This conditional distribution can be seen to be uniform on
the interval [max {max{Z;:Y; =j}, v,-1 }, min {min{Z;:Y;
= j + 1}, ¥j+1}]. To implement the Gibbs sampler here,
start with (8, v) set equal to the MLE and simulate from
the distributions (18), (17), and (5), in that order.

4.2 Unordered Categories With a Latent
Multinormal Distribution

The Gibbs sampling approach can also be applied to the
multinomial probit model introduced by Aitchison and
Bennett (1970); (also see Hausman and Wise 1978, Daganzo
1979, Amemiya 1985). For illustrative purposes, we focus
on one particular version of the model. First, we introduce
independent unobservable latent variables Z;, ..., Zy,

where Z; = (Z;, ..., Zy) (J > 2), and define Z; = x[8
+ey, i =1, ..., N, j=1,2, ..., J, where g
= (&, ..., ¢y) 7 is distributed N;(0, Z) and Zisa J X J

matrix that is parameterized (for identifiability reasons) in
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terms of a parameter vector 0 of dimension not exceeding
J(J — 1)/2. It is helpful to think of i as the index of exper-
imental units and j as the index of categories. On unit { we
observe one of J possible outcomes with respective proba-
bilities p;, . .., py. Category j is observed if Z; > Z for
all k # j. (McFadden [1974] has shown that the multinomial
logit model can be derived in this setup if and only if the
errors {¢;} are a random sample from a Type I extreme
value distribution.) The multinomial probabilities are given
by p; = P[x}B + ¢; > xkB + e, for all k # j]. Note that
computation of these probabilities entails calculation of
multiple integrals of the multivariate normal density; thus
maximum likelihood estimation is very difficult to perform
for large J.

The computation of the multinomial probabilities can be
avoided by the following Gibbs sampling approach. As
in Section 4.1, denote the vector of observed categories
asY =y, ..., n), where y; € {1, ..., J}. Letting x;
= (X1, ..., Xy)T, the preceding model can be rewritten as

Z, X €1
o Bl R I
ZN XN, EN.

oras Z = XB + ¢, where ¢ = (ef, ..., ¢%)7 is distributed

(19)
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require samples from the following conditional distributions:

BIY,Z,...,Zyn,0
Zl," "ZN|Y3B,0
01Y,Zy, ..., Zy, 8. (20)

From the representation (19), if a diffuse prior is placed
on B, then standard multivariate normal theory yields that
BIZ, ..., Zy, Y, 6 is distributed Ni(Bz, (X"@7'X)™"),
where 87 = (X’Q7'X)"'X7Q~'Z. Note that computation
of the parameters of the latter distribution is easy, because
Q' is a block diagonal matrix with ' as the typical block.
Next, given Y, 8, 0, {Z; } is an independent collection with
Z:|Y, B, 0 distributed N(x;8, Z), i =1, ..., N, such that
the y;th component of Z; is the maximum. This may be
simulated by drawing a sample from N(x;8, =) and accepting
the draw if the condition is satisfied. An alternative method
of performing this draw is outlined in McCulloch and Rossi
(1991) (see also Geweke, 1991). Finally, consider the sam-
pling of 0|Z,, ..., Zy, Y, 8. Using a prior 7(6) on 0, the
density of this distribution is proportional to

7r(0)|9(0)|‘”2exp[— % (Z-Xp"2'(6)(Z - Xﬂ)] .

Ny (0, @ = Iy ® ). To implement the Gibbs sampler, we (21)
m 81 82
0.6 100 iterations 1 100 iterations
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Figure 2. Estimated Posterior Densities of Regression Parameters for Finney Data for Different Number of Iterations m. The solid line is the “‘exact”
density computed using adaptive quadrature. The dashed line represents approximation using Gibbs sampling.



Albert and Chib: Bayesian Analysis of Binary Data

This distribution is not a member of any familiar parametric
family and is relatively difficult to simulate. As in Section
4.1, however, one can simplify this sampling by drawing
from a normal distribution with matching mode and cur-
vature.

5. EXAMPLES
5.1 Finney Data

We illustrate the sampling method on data first analyzed
by Finney (1947); see also Myers (1990, pp. 330-332). One
probit model of interest is

O (pi) = Bo+ Bixi + Baxgi, i=1, ... (22)

where x;; is the volume of air inspired, x,, is the rate of air
inspired, and the binary outcome observed is the occurrence
Or nonoccurrence on a transient vasorestriction on the skin
of the digits. In the following posterior analysis, a uniform
prior is placed on the regression parameter S.

In Figure 2 (p. 674) density estimates for 8, and (8, are
plotted for simulated samples of size 100, 200, and 800. In
each plot the solid line represents the “exact” posterior den-
sity computed using the adaptive quadrature scheme of
Naylor and Smith (1982), and the dashed line is the Gibbs
sampling approximation. Note that the accuracy of the Gibbs

» 39,

EXACT and ML

03

beta 2

Figure 3. Exact (Solid Line) and Maximum Likelihood Approximate
(Dashed Line) Posterior Densities For the Regression Coefficients for Fin-
ney’s Data.
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Table 1. Maximum Likelihood Parameter Estimates and Associated
Standard Errors for Election Data Using Probit Link

Variable Coefficient Standard error
Constant 6.153E+01 3.008E+01
Income —8.926E—-06 2.373E-04
School —5.085E+00 2.583E+00
Urban 3.181E-02 1.539E-02
SE * % * %

MW —9.026E—02 5.831E-01
WE —5.928E—-01 7.360E—01

NOTE: Nonexistence of the estimate Is indicated by two asterisks.

estimates increases for larger sample sizes, and the two den-
sity curves are indistinguishable for a simulation sample of
800.

Figure 3 compares these final Gibbs density estimates
against the approximate densities based on the ML normal
approximation. In this example the exact densities exhibit
some skewness, although the locations of the densities are
similar.

5.2 Election Data

In this section we illustrate extensions of the probit model
for election data discussed in Green (1990, p. 671). The
problem is to predict the Carter/Ford vote in the 1976 Pres-
idential election using six socioeconomic and regional vari-
ables. We begin by presenting in Table 1 the ML parameter
estimates and associated standard errors using a probit link.
The first observation based on this table is that the MLE for
the SE regional variables does not converge. Closer exami-
nation of the data reveals that the SE variable equals 1 only
for observations 1, 10, 11, 19, 25, 34, and 41 and that for
these particular observations, the fitted probabilities are all
equal to 1. Second, by comparing the size of the estimates
with their standard errors, it appears that only the school
and urban variables are important in predicting the Carter/
Ford vote.

Is the ML fit sensitive to the choice of link function? To
help answer this question, Figure 4 compares ML fitted
probabilities using probit and #(4)-link functions. For ease
of comparison, both sets of probabilities are transformed
to the logit (log(p/(1 — p)) scale. On the graph, the
probit-fitted probability is plotted against logit(z(4) prob.fit)
— logit(probit prob.fit). This figure demonstrates that the fit-

mle fitted probs under probit and t(4) links

¥
*‘i*u* x K R TR

logif((4))-logit(probit)
(=]

0 0.2 0.4 0.6 0.8 1
probit probability

Figure 4. A Comparison of MLE Fitted Probabilities Using Probit and
t(4) Link Functions.
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ted probabilities for the two models can be significantly dif-
ferent. The most noticeable differences here correspond to
small values of p where the -fitted probabilities are signifi-
cantly larger. This brief analysis suggests that the choice of
link can make a difference and that it is worthwhile to con-
sider a general form for the link function.

Before we apply some Bayesian models to this data, we
must attend to the problem of nonconvergence of the MLE
of Bs in this example. When one explores the likelihood
function, one discovers that when the other parameters are
held fixed, the likelihood of 85 approaches a constant value
as the parameter approaches infinity. Thus to obtain a proper
posterior distribution for 3, one must assign a proper prior
distribution to 8s.

Because the logistic model is a popular model for this
data, we first investigate the connection between the logistic
model and the generalized probit models described in this
article. In Section 3.2 it was stated that the logistic link func-
tion appears approximately equivalent to a #-link function
with 8 df. To confirm this observation, we compare the pos-
terior analyses for the following two models:

« Logistic model: p; = exp(x! 8)/(1 + exp(xTB)), (Bs,
{B;,j # 5}) independent with 3; distributed N(0, 1) and
{B,,j # 5} distributed uniform on R®

* T(8) model: p; = Fre(x]B), (Bs, {B;,j # 5}) inde-
pendent with @s distributed N(0, .4) and {B;, j # 5}
distributed uniform on R®.

x10-3
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Note that for each model, a proper prior distribution is as-
signed to B85 to ensure that the posterior distribution will be
proper.

Second, because a ¢(8) random variable is approximately
.634 times a logistic random variable, the logistic regression
parameter (s distributed N(0, 1) is approximately equivalent
to a #(8) regression parameter (s distributed N(0, .4). Thus
the significant prior information in the two models is ap-
proximately matched.

The Gibbs sampler procedure described in Section 3.2
was used to obtain a simulated sample 3 of size 2,000 for
the #(8) link model. Dellaportas and Smith (in press) de-
scribed the use of Gibbs sampling and an adaptive rejection
algorithm to simulate the regression parameter for a logistic
model. Their procedure was used to simulate a sample of
size 2,000 for the logistic model. Normal kernel density es-
timates of the simulated draws of the seven regression pa-
rameters are presented in Figure 5. (The 7(8) parameters were
modified by a factor of .634 to make them comparable to
the logistic parameters.) Note that the two sets of marginal
posterior density estimates are very similar, supporting the
claim made earlier that the logistic and #(8) models are ap-
proximately equivalent.

The preceding analysis considered the use of a ¢ link func-
tion with known df. Next, suppose that one wanted to use
a ¢ link where the df was unknown from the set {4, 8, 16,
32}. One may be uncertain about the most likely value of
degrees of freedom, and so a prior is used that assigns equal
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6} 800F AN 0.06|
7 \
\
. 600} /s S
1 7 0.04} J
a0} “d \,
7 \
2t 200t il \S 0.02
4 \J
- < N S
0 0 0
-100 0 100 200 300 400 2 1.5 -1 0.5 0 0.5 1 40 10
x10-3
15 0.5 0.4
.,
0.4 Y
' 03t
10}
0.3} ]
0.2f
0.2}
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o1} O.1r
0 0
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Figure 5. Posterior Densities of Regression Coefficients for t8 (Solid Lines) and Logistic (Dashed Lines) Models. The top row corresponds to §;,

34, B3; the middle row to B4, Bs, Be; and the bottom row to 3;.
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Table 2. Posterior Moments of Regression Coefficients for t-Link Analysis
With Unknown Degrees of Freedom

Posterior Numerical

Posterior standard Lag one standard
Variable mean deviation correlation error
Constant 89.3 43.8 .863 17
Income —1.95E—4 3.62E—4 914 .20E—4*
School -7.18 3.76 .867 14
Urban .0511 .0245 919 .0017*
SE .256 0.587 .502 .010
MW —.467 0.728 715 .019
WE -1.38 1.17 .861 .06*

NOTE: Uncertain values of numerical standard errors due to strong lag correlation are indicated by an asterisk.
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probabilities to » in the finite set. Asin the previous example,
we assign s a N(0, 1) prior. The Gibbs sampler was run
with m = 10,000 cycles. The main conclusions of this analysis
are as follows:

1. In the Gibbs run the posterior probabilities of the de-
grees of freedom values 4, 8, 16, and 32 were given by .52,
.21, .14, and .11. Thus the best fit appears to be a ¢-link with
the smallest value of ».

2. A table of posterior standard moments for the seven
regression coefficients is given in Table 2. Because these mo-
ments are based on a single run of the Gibbs sampler, two
columns of this table give summary statistics for this run
that are helpful in diagnosing convergence. The “lag one
correlation” column gives lag one autocorrelations of the
sample, and the “numerical standard errors” column give
numerical standard errors for the posterior means based on
the batch means method described in Section 2.3. Batches
of increasing size were collected until the lag one correlation
of the batch means was under .05. The numerical standard
error is then the standard deviation of the batch means di-
vided by the square root of the number of batches. An asterisk
indicates that the lag one correlation of the batch means was
not under .05; for these three coefficients the lag correlation
of the batch means was in the .1-.2 range and the corre-
sponding numerical standard errors are probably slightly
understated.

3. The posterior distributions of the probabilities p; using
the z-link (df unknown) were noticeably different from the
posterior distributions for p; using the probit link. This is
demonstrated in Figure 6, which plots the difference in the

0.4
- *
= 02} 4
E- h* X X ik
% o l: * * ;
'$ X X ** X X X **
= % X
= £x, x
® 02} J
.Q &* * X X

x x X
04
0.2 0.4 0.6 0.8 1

probit fitted probability

Figure 6. Posterior Means of the Fitted Probabilities p; Using Probit
and t-Links.

logits of the posterior means of p; (against the observation
number) for the probit and z-links. Note that the graph’s
snake-type appearance is qualitatively similar to the MLE
comparison in Figure 4.

4. Figure 7 plots the normalized posterior distribution for
the residuals y; — p; = y; — H(xT B8) (corresponding to the
first 12 observations) using the t-link model. In the usual
classical analysis, it is difficult to interpret the size of the
residual y; — p,, because it takes on only the two values—
p; and 1 — p;. In contrast the Bayesian residual y; — p;
is real valued on the interval [y; — 1, y;]. As in Chaloner
and Brant (1988), one can determine whether a particular
observation is an outlier by the posterior computation
P[|y; — p;| > k] for a particular constant k. In this example
one can informally check for outliers by looking for the dis-
tributions concentrated away from 0. For the 12 observations
presented here, one observes that the distributions of residuals
of observations 7, 8, and 12 are concentrated away from 0.

In the preceding ML fit with seven covariates, one concern
is the effect of the SE variable on the analysis. One may
suspect that this term (and the other regional effects) may
be removed from the model with little change in the overall

5 5 J 5 /
0 0 0

1 0 1 1 0 1 1 0 1
s k 5 5 J

0 0 J 0

1 0 1 1 0 1 1 0 1
5 5 5 K
0 0 0

1 0 1 1 0 1 1 0 1
s 5 5

0 0 0

1 0 1 1 0 1 1 0 1

Figure 7. Posterior Densities Using the t-Link of Residuals y; — p; for
the First 12 Observations for the Voting Data. Observations 1-3 are in the
first row, 4-6 are in the second row, 7-9 are in the third row, and 10-12
are in the fourth row.
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Table 3. Maximum Likelihood Estimates Under Full and Reduced Models and Hierarchical Posterior Means
Beta index 1 2 3 4 5 6 7

Full model 61.5 —9E-6 —5.08 .0318 * % —.0952 —.593
(30.1) (2.37E—4) (2.58) (.0154) (x*) (.583) (.736)

Reduced model 87.3 2.37E-5 —7.20 .0331 0 0 0
(24.4) (1.92E—4) (2.09) (.0142) 0) 0) 0)

Hierarchical 94.9 —2.0E-5 -7.79 .0398 .0997 -.0137 —.0642
(27.6) (1.95E—4) (2.24) (.0166) (.3553) (.214) (.264)

Numerical standard error 1.2 .85E-5 10 .0007 .014 .0083 .0086

NOTE: Associated standard errors are in parentheses. Numerical standard errors of the posterior means are also given. Nonexistence of the mle is indicated by an asterisk.

fit. To reflect this belief, we can apply the hierarchical model
(14) with A = [%], where 1, is the identity matrix of dimen-
sion 4.

In this example we placed uniform prior probability for
log o2 on the set { —8, —7, ..., 4} and ran the Gibbs sampler
with m = 1,000. (Here simulated values were collected using
a spacing of five cycles.) Table 3 presents posterior means
and standard deviations for the components of 8. (As in
Table 2, numerical standard errors of the posterior means
are given.) To help understand these posterior moments,
this table also gives MLE’s for 8 under the full model and
the reduced model, where the last three components are equal
to 0. Note that the posterior moments of the last three com-
ponents are all near 0. In addition, the posterior density for
o2 is concentrated towards 0. From these observations, it
appears that the regional effects are not significant.

5.3 A Trivariate Probit Example

To illustrate the calculations for the unordered multi-
nomial setting of Section 4.2, consider the analysis of the
trivariate probit model discussed by Daganzo (1979, chap.
2). The model for the latent variable for the ith subject is
given by

Zi Xi1 1 p 0
Z; is distributed N{ | xi2 |8, | p 1| O , (23)
Z; Xi3 0 0 1

and the observation y; is the index of the maximum of (Z;,,
Z:>, Z;3). In the example discussed by Daganzo, Z; repre-
sents the perceived attractiveness by subject i of the kth mode
of transportation, x; denotes the travel time by mode k, and
the scalar 3 represents the attractiveness of the value of travel
time. Modes 1 and 2 are public transportation modes that
are believed related, with unknown correlation p. The subject
bases the choice y; of transportation mode on the maximum
of the perceived attractiveness values {Z; }.

In this setting the fully conditional posterior of 8 (21) takes
a simple form. If one defines wy. = Z; — xu8, k = 1, 2, then
the fully conditional posterior density of the correlation coef-
ficient p is proportional to

w(p)(1 = p?) ™2

X exp[— (Swl — 2pSwin2 T Sw2)} s

2(1 - p?)
where S,;, S.2, and S, are the usual sum of squares of
the paired data {(w;;, wiz), i = 1, ..., N}. Using well-

known approximations to this posterior (see, for example,
Lee 1989, chap. 6), one can simulate from this density. To
implement the Gibbs sampler, we initialize p = 0 and then
cycle through the conditional distributions Z, 8 and p, in
that order.

Daganzo (1979) analyzed a hypothetical data set of 50
observations. The MLE of (3, p) was found to be (.238,
.475) with standard errors (.144, .316). The Gibbs sampler
was run for m = 12,000 cycles with a uniform prior on (8,
p). The estimated posterior means and standard deviations
of (B, p) were given by (.234, .291) and (.0475, .340). (By
the computation of simulation standard errors, the posterior
means appear to be accurate to the second significant digit.)
Note that the posterior standard deviation of § is significantly
smaller than the MLE standard deviation. In addition, due
to the strong left skewness of the marginal posterior distri-
bution of p, the posterior mean is significantly smaller than
the MLE. This example further illustrates that the infor-
mation provided by the exact posterior and ML can be dif-
ferent.

6. CONCLUDING REMARKS

The main point of this article is that by introducing latent
data into the problem, the probit model on the binary re-
sponse is connected with the normal linear model on the
continuous latent data response. This approach has a number
of advantages. First, it allows one to perform exact inference
for binary regression models; this likely will be preferable to
ML methods for small samples. The approach is especially
attractive in the multinomial setup, where it can be difficult
to evaluate the likelihood function. Second, applying this
approach using Gibbs sampling requires simulation mainly
from standard distributions such as the multivariate normal
and, therefore, is easy to implement in many statistical com-
puter languages. Finally, one can easily elaborate the probit
model by using suitable mixtures of normal distributions to
model the latent data. This approach was illustrated by con-
sideration of f-link and hierarchical models.

One caution in the use of Gibbs sampling is that, by sim-
ulation, one is introducing extra randomness into the esti-
mation procedure, and it is important to understand when
a particular simulation process has converged. Some methods
for the diagnosis of convergence have been discussed here—
namely, the “settling down” of marginal posterior density
estimates and the use of batching to obtain simulation stan-
dard errors for estimated posterior moments. Because the
relative simplicity of this simulation method in this appli-
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cation, we believe that there will be future research into the
automation of this algorithm so that it can be incorporated
into standard statistical software.

[Received April 1991. Revised June 1992.]
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