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ROGER E. MILLSAP

ARIZONA STATE UNIVERSITY

Borsboom (Psychometrika, 71:425–440, 2006) noted that recent work on measurement invariance
(MI) and predictive invariance (PI) has had little impact on the practice of measurement in psychology.
To understand this contention, the definitions of MI and PI are reviewed, followed by results on the
consistency between the two forms of invariance in the general case. The special parametric cases of
factor analysis (strict factorial invariance) and linear regression analyses (strong regression invariance)
are then described, along with findings on the inconsistency between the two forms of invariance in this
context. Two numerical examples of inconsistency are reviewed in detail. The impact of violations of MI
on accuracy of selection is illustrated. Finally, reasons for the slow dissemination of work on invariance
are discussed, and the prospects for altering this situation are weighed.
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Introduction

Borsboom (2006) argued that modern advances in psychometrics have failed to penetrate the
actual practice of measurement among psychologists. He gave a number of examples of advances
that have not had much impact on practice. One of these examples concerned work by myself and
others on measurement invariance and its relation to invariance in prediction. Borsboom pointed
out that this work has been generally ignored, particularly in the formulation of testing standards
(AERA, APA & NCME, 1999; Society for Industrial/Organizational Psychology, 2003). Not
long after the publication of Borsboom (2006) (and independently of that publication), I was
asked by a colleague who is an industrial/organizational psychologist to explain why my work
on invariance has had no visible impact on testing practice in that field. It is sobering to be asked
such questions, and to ponder what answers may exist.

I must concede that both Borsboom (2006) and my colleague are correct: The body of work
on invariance in measurement and prediction has yet to have much impact on measurement prac-
tice. For example, it is still true that many psychologist’s views about bias in testing are based pri-
marily on studies that compare test/criterion regressions across populations (Hunter & Schmidt,
2000; Neisser, Boodoo, Bourchard, Boykin, Brody, Ceci, Halpern, Loehlin, Perloff, Sternberg,
& Urbina, 1996; Sackett, Schmitt, Ellington, & Kabin, 2001). This basis for judging bias is
enshrined in current testing standards, as noted by Borsboom. Yet conclusions about test bias
that rely primarily on invariance in test/criterion regressions or correlations are demonstrably
flawed (Millsap, 1995). The many empirical primary and meta-analytic studies on invariance in
regressions and correlations, while providing useful information, cannot fully support conclu-
sions about bias or lack of bias in measurement. Furthermore, some relatively simple diagnostic
procedures that could be used to more fully examine bias in prediction and measurement are not
being used.
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What is the explanation for this gap between psychometric theory and actual measurement
practice? Borsboom (2006) provided some cogent explanations, as did some of the commentators
on that paper (e.g., Clark, 2006). Here I will offer my perspective. In what follows, I first review
the concepts of measurement invariance and predictive invariance. The relationship between the
two forms of invariance are then reviewed, both for the general nonparametric case and for the
specific examples of factorial invariance and regression invariance. Two specific cases in which
these forms of invariance are inconsistent are then fully described. A numerical example is given
to illustrate these cases, along with their implications for selection accuracy. The final section
returns to the question of why these results are not more widely known, and what might be done
to disseminate psychometric advances.

What Is Measurement Invariance?

At its root, the notion of measurement invariance (MI) is that some properties of a measure
should be independent of the characteristics of the person being measured, apart from those
characteristics that are the intended focus of the measure. This definition requires elaboration
because it brings together some disparate concepts. First, what do we mean by a “measure”? MI
is not tied to any specific type of test or item. It could apply to individual test items, blocks of test
items or testlets, subtests, or whole tests. It could also be applied to ratings or judgments made by
a set of raters in relation to a set of rates (this application is not considered further here). Finally,
no particular scale properties for the measure are assumed; MI could apply to discrete nominal
or ordinal scores, or to continuous interval scores.

A second consideration lies in the measurement “properties” that are expected to be inde-
pendent of examinee characteristics. We don’t expect that all properties of a measure will be
invariant. The average score on a measure will generally vary as a function of many examinee
characteristics, for example. Similarly, the reliability of a measure is not viewed as an invari-
ant property of the measure, given that variation in true scores may itself be different across
groups of examinees. On the other hand, if a measure fits a common factor model, we expect that
the unstandardized factor loading(s) for the measure will be invariant under fairly broad condi-
tions (Bloxom, 1972; Meredith, 1964a, 1964b). As shown below, the key to distinguishing which
properties of a measure should be invariant from those properties that are not is the definition of
invariance in terms of conditional probabilities.

The definition of MI also requires one to distinguish between characteristics of the person
that are the “focus” of the measure, and those characteristics that are irrelevant to this focus
(Ackerman, 1992; Kok, 1988; Shealy & Stout, 1993; Stout, 1990). It should be obvious that the
notion of measurement invariance is rendered vacuous if one takes the position that the “focus”
of the measure is simply defined by the content alone (e.g., “intelligence is what intelligence tests
measure”). On this view, there can be no question of invariance because the focus of the test is
defined solely by its content. Score differences between individuals who take the same test might
be attributable partly to measurement error, but there can be no coherent definition of “bias” in
measurement because there is no clear definition of characteristics that are irrelevant to the focus
of the test. MI requires some a priori definition of the intended focus of the measure: What is
it that we are trying to measure? In psychological measurement, the characteristics that are the
focus of a measure are usually formally defined as latent variables. The question then becomes:
What are the intended latent variables to be targeted by the measure?

Nothing in the definition of MI requires the intended latent variables to be unitary, with only
one intended latent dimension. Some confusion exists on this point (e.g., Hunter & Schmidt,
2000). It is true that some of the latent variable models used to investigate violations of MI rou-
tinely assume unidimensionality, examples being models based on unidimensional item response
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theory (IRT). In contrast, studies of factorial invariance have been conducted for almost 70 years
(e.g., Thomson & Lederman, 1939) using multiple factor models. Hence there is no method-
ological requirement of unidimensionality in studies of MI. For studies in which a single latent
variable is defined as the intended latent variable for the measure, the presence of additional
latent variables underlying the measure may indeed trigger violations of MI. Such findings are
probably appropriate if the additional latent variables cannot be explained or identified through
post hoc analyses.

With these considerations in mind, the definition of measurement invariance is traditionally
expressed using conditional probability. Let X be the q × 1 vector of random variables repre-
senting scores on the observed measures under study. Let W be an r × 1 vector of the intended
latent variables for X. Let V be an s × 1 vector of measured variables that define the person char-
acteristics of interest that should be irrelevant to X once W is considered. In many cases, s = 1
and V is a scalar group identifier that defines demographic variables such as gender or ethnicity.
Measurement invariance (MI) of X in relation to W and V is defined to hold if and only if

P(X|W,V) = P(X|W) (1)

for all X,W,V, where P(A|B) is the conditional probability function for A given B (Lord, 1980;
Mellenbergh, 1989; Meredith & Millsap, 1992). Here this probability can be expressed either as
a discrete conditional probability for discrete X, or as a conditional probability density function
for continuous X. The general notation in the above is intended to apply to either case, depending
on the context.

Investigations of invariance in (1) arise in many contexts, varying with the type of measure X
and the type of model that describes the relation of X and W. When X fits a common factor model
with common factors W, MI in (1) implies factorial invariance. Factorial invariance has a long
history (Ahmavaara, 1954; Thomson & Lederman, 1939; Thurstone, 1947). Factorial invariance
itself is ordinarily weaker than invariance in (1) because only the first and second conditional
moment structure is studied in factorial invariance investigations, while (1) requires invariance
in conditional distributions. When X consists of item scores that fit one of the models in item
response theory (IRT), investigations of invariance in (1) evaluate differential item functioning
(DIF) (Thissen, Steinberg, & Wainer, 1988). Here W is a continuous latent variable, typically
unidimensional. Alternatively, W might be defined as a latent class identifier, with X fitting a
latent class model across populations defined by V. A traditional focus of invariance studies has
been in cognitive and achievement tests in educational settings, but invariance studies in other
research contexts are becoming more common. In translated measures, invariance investigations
examine equivalence of measures across language groups (Drasgow & Probst, 2004; Hambleton,
Merenda, & Spielberger, 2006). Measures of attitudes, personality attributes, and other non-
cognitive attributes are also studied for invariance (Byrne, 1994; Hofer, Horn, & Eber, 1997;
Pentz & Chou, 1994). A further application lies in randomized or quasi-experimental studies in
which the groups are defined experimentally by the treatment received, and the goal is to check
whether the relation of X to W is altered by the treatment (Millsap & Hartog, 1988; Riordan,
Richardson, Schaffer, & Vandenberg, 2001).

What Is Predictive Invariance?

Much of the literature on “test bias” in applied psychological research has focused on
predictions based on test scores, rather than on measurement invariance in (1) (Cleary, 1968;
Jensen, 1980). For example, suppose that we partition X = (Y,Z) with Y a scalar criterion
measure of interest, and Z a p × 1 vector of predictor variables with p = q − 1. To illustrate,
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Y might be a measure of job performance and Z might be a set of selection measures used to
select prospective employees. Or Y could be grade point average and Z could represent the SAT
Verbal and Math scores. In this prediction context, a different notion of invariance arises based
on the relationship of Y to Z, and whether this relationship varies depending on other person
characteristics. Defining V as before, we can define predictive invariance (PI) for Z in relation to
Y and V as existing if and only if

P(Y |Z,V) = P(Y |Z) (2)

for all Y,Z,V (Meredith & Millsap, 1992; Millsap, 1995). For example, suppose that Y is a
binary variable that indicates whether a person scores above a fixed threshold on an observed
criterion measure (e.g., dollar sales), Z is a selection test score for salespersons, and V is a
gender identifier. Under predictive invariance, the probability that anyone exceeds the threshold
on dollar sales, given their selection test score, is the same regardless of gender. Conversely, if
invariance in (2) fails to hold, it means that within groups defined by a common selection test
score Z, there are gender difference in the probability of surpassing the dollar sales threshold.
A similar description applies if Y is taken as actual dollar sales. In this case, a violation of PI
occurs when there are gender differences in the distribution of dollar sales within groups defined
by a common selection test score Z.

Several points should be noted about the definition of PI in (2). First, no latent variables
appear in (2). In many applications, Z will ultimately be used as a basis for decisions involving
selection or access to resources (e.g., clinical treatment). The decisions are made on the basis
of Z, rather than any latent variables that underlie Z. For this reason, the relationship of Y to Z is
of intrinsic interest. Second, PI in (2) is more stringent than is desired in many applications when
Y is continuous. In this case, standard practice is to model the relationship of Y to Z using linear
regression, followed by an investigation of whether the regression functions vary over V. Studies
of “differential prediction” are studies of this form of PI; this topic has a long history (Cleary,
1968; Humphreys, 1952; Potthoff, 1966).

Investigations of PI arise in many domains. As noted, traditional studies of differential pre-
diction in educational measurement and industrial/organizational psychology using cognitive
tests as predictors are familiar examples (e.g., Bridgeman & Lewis, 1996). Less familiar are
studies of PI in clinical prediction in relation to groups defined by culture, language, gender, or
age (e.g., Krakowski & Czobor, 2004). Here the criterion may be a binary diagnosis, for exam-
ple. Also in a clinical context, investigations of how treatment effects vary depending on baseline
status are really investigations of PI, where the outcome measure is Y , the treatment groups de-
fine V, and Z is the baseline measure (Brown & Liao, 1999). Within an analysis of covariance in
this setting, PI would imply no treatment effect and no treatment by baseline interaction.

How Are MI and PI Related?

While much has been written about each form of invariance or special cases of the two,
very little has appeared on their relationship, particularly in the most general case. One special
case that has received attention is when: (1) X fits a common factor model with p = 1; and
(2) Y and Z are related via a linear regression (Birnbaum, 1979; Humphreys, 1986; Linn, 1984;
Linn & Werts, 1971; Millsap, 1995, 1997, 1998). The general question of interest is whether the
existence of one form of invariance implies that the other form of invariance must hold. Further,
if there is no logical equivalence between the two forms of invariance, under what conditions
are they consistent or inconsistent? One motivation for such questions is practical. PI is more
easily investigated than MI because no latent variables are involved. If PI has implications for
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MI, this fact greatly simplifies the investigation of MI. A second motivation lies in how we should
interpret the many existing studies of PI in areas such as industrial/organizational psychology. In
applied settings, one can ask whether the existence of MI should matter if PI is found to hold. To
make this concrete, if the prediction of a job performance measure Y given a selection test score
Z is the same regardless of V, why should we care about MI? After all, no systematic under- or
over-prediction of Y is happening in this case in relation to Z and V. As will be illustrated below,
in this purely practical context we should still care about MI because violations of MI can lead
to systematic inaccuracy in selection, even though PI holds.

The General Case

Some results are available on the relationship between MI and PI for the general case in
which no particular parametric model is assumed either for the relation of X to W, or the relation
of Y to Z (Meredith & Millsap, 1992; Millsap & Meredith, 1992). These results are useful in set-
ting broad conditions for the consistency or inconsistency between the two forms of invariance.

The first result identifies one set of conditions under which MI and PI are consistent. Suppose
that

P(Y |Z,W) = P(Y |Z) (3)

for all Y,Z,W. Then if MI holds for X in relation to W and V (i.e., (1) holds), it must be true that
(2) holds, or that PI holds for Z in relation to Y and V. The condition in (3) was denoted “Bayes
sufficiency” for Z in relation to Y and W in Meredith and Millsap (1992; see also Lehman, 1986).
It is a sufficiency condition in the sense that (3) implies that all of the information in W that is
relevant to Y is contained in Z. Once we condition on Z, Y and W are conditionally independent.
The classic example of (3) exists when Z is the sum of a set of binary test items that fit a Rasch
model, Y is a single item score variable that is part of the sum in Z, and W is the latent variable
underlying all test items. Then (3) is known to hold under the structure of the Rasch model. The
sufficiency principle is relevant for the Mantel–Haenszel method of DIF detection, and explains
why the item being studied for DIF must be included in the sum Z (Zwick, 1990).

Unfortunately, Bayes sufficiency is violated under some conditions that are often assumed
to hold in predictive studies. For example, suppose that Y and Z are disjoint sets of variables
(i.e., Y is not contained in Z) and that

P(Y |Z,W,V) = P(Y |W,V) (4)

for all Y,Z,W,V. Then it can be shown that if MI in (1) holds, PI in (2) cannot hold generally.
PI must be violated for some combination of Y , Z, and W. The condition in (4) is typically de-
noted as “local independence” of Y and Z given W and V. Local independence is a condition
that is invoked in almost all latent variable models for Y and Z. For example, if X fits a com-
mon factor model with common factors W and with multivariate normality for (X, W) within
populations defined by V, then (4) holds. In prediction applications, the assumption that Y and
Z fit a latent variable model under local independence is more natural than the Bayes sufficiency
condition in (3). Local independence is generally inconsistent with Bayes sufficiency, and under
local independence in (4), MI is inconsistent with PI.

The above two results involving Bayes sufficiency and local independence are not the only
results that may be achieved for the general, nonparametric case. Under some conditions, local
independence for Z and Y is compatible with PI, but these conditions imply that MI fails to hold
for Z, or that Z is biased as a measure of W. These nonparametric results are useful by virtue
of their generality, but applied researchers ordinarily work within specific parametric modeling
traditions. We turn now to these special cases, and their implications for the relationships between
the two forms of invariance.



466 PSYCHOMETRIKA

The Linear Case: Factor Analysis and Regression

As noted earlier, one specific case in which the relation between PI and MI has received
attention is the case of: (1) X fits a common factor model in relation to the single common
factor W; and (2) the regression of Y on Z is linear. For the factor model, let Xk be the q × 1
vector of measured variables within the kth population as defined by V, k = 1, . . . ,K . We assume
that

Xk = τ k + �kWk + uk, (5)

where τ k is a q × 1 vector of measurement intercept parameters, �k is a q × 1 vector of factor
loading parameters, Wk is a scalar factor score random variable, and uk is a q × 1 vector of
unique factor random variables. We assume that, for all k,

Cov(Wk,uk) = 0, E(Wk) = κk, Var(Wk) = φk, E(uk) = 0, Cov(uk) = �k,

(6)
with �k being a q × q diagonal matrix. Given the partitioning X′

k = (Yk,Zk), we can define an
analogous partitioning for τ k and �k as

τ k =
[

τyk

τ zk

]
, �k =

[
λyk

�zk

]
. (7)

Note that under this factor model

E(Xk|Wk) = τ k + �kWk, Cov(Xk|Wk) = �k. (8)

MI therefore implies that for �k = (τ k,�k�k) we must have �k = � for all k; there are no
group differences in the parameter set �. Invariance in �k is denoted as strict factorial invariance
in the literature (Meredith, 1993). Strict factorial invariance by itself need not imply MI unless
certain distributional assumptions are met. Conditions of factorial invariance that are weaker
than strict invariance are often of interest in applications. Metric invariance (Horn & McArdle,
1992; Thurstone, 1947) or pattern invariance (Millsap, 1995) is often put forth as a minimum
requirement for invariance: �k = � for all k. Finally, note that invariance in the parameters
(κk,φk) that determine the distribution of Wk is not required for factorial invariance.

Turning to the relation between Y and Z, it is assumed that within the kth group defined
by V,

Yk = β0k + β ′
1kZk + ek, (9)

with β0k being the regression intercept, β1k the p × 1 vector of regression coefficients, and
ek being a residual random variable. It is assumed that

E(Yk|Zk) = β0k + β ′
1kZk, Var(Yk|Zk) = σ 2

ek. (10)

PI implies that the parameters �k = (β0k,β1k, σek) are invariant: �k = � for all k. In practice
however, interest focuses chiefly on the intercept and regression coefficient parameters. For ex-
ample, the condition β1k = β1 for all k is denoted slope invariance (Millsap, 1995). If slope
invariance holds and the regression intercepts are also invariant (β0k = β0), this condition will
be denoted strong regression invariance, by analogy with strong factorial invariance (Meredith,
1993).

Having defined the parametric models for both measurement and prediction involving Xk ,
we can return to the issue of consistency between MI and PI. For example, given strict factorial
invariance, must we also have strong regression invariance? Conversely, given strong regression
invariance, must we also have strict factorial invariance? Fortunately, we have fairly complete
answers to these questions. Here we will examine two situations in which the two forms of
invariance are inconsistent.
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Case One: Strict Factorial Invariance Without Strong Regression Invariance

Given the above model definitions, it has long been known that strict factorial invariance may
hold and yet strong regression invariance may fail to hold (Birnbaum, 1979; Humphreys, 1986;
Linn, 1984). In this situation, the slope parameters are invariant (β1k = β1 for all k) but the
regression intercept parameters vary across groups. Millsap (1998) gave several theorems that
applied to this case. It is assumed that not only does strict factorial invariance hold, but invariance
in the common factor variance must hold as well. Under these assumptions, for k = 1, 2 for
example, we have β01 > β02 if and only if κ1 > κ2. The direction of the intercept difference is
determined by the factor mean difference: the group with the larger factor mean will have the
larger intercept. If a common regression line is imposed on the two groups, the group with the
higher intercept will show systematic underprediction via the common line. In many applications,
this group is the majority or reference group. This scenario matches empirical findings in studies
of PI in which the only group difference in the regression lies in the intercepts, and that difference
appears to favor the lower scoring group (i.e., the group with the lower factor mean) (Gottfredson,
1994; Hartigan & Wigdor, 1989; Jensen, 1980; Sackett & Wilk, 1994; Schmidt, Pearlman, &
Hunter, 1980). These results, combined with the model that implies them, have been used to
illustrate why group differences in regression intercepts need not indicate any problem in the
predictor measure (Z), given that the results occur under strict factorial invariance (e.g., Jensen,
1980).

Several points should be noted with regard to this Case One scenario however. First, the
model that is assumed to be responsible for the results is highly restrictive: both strict factorial
invariance and invariance in the common factor variance are needed. The model has some strong
implications. It implies that the covariance matrix for Xk is identical across groups, as is the
correlation matrix. Furthermore, group differences in the observed means on Xk should all be
in the same direction, apart from sampling error. In other words, across the vector of measured
variables Xk , one group should consistently have higher means. Second, the factor model that
underlies the results is testable with ordinary structural equation modeling software, even when
only a single predictor is used (p = 1). The factor model has df = p(p+2), and so p = 1 implies
df = 3. The test of fit is described and illustrated using real data in Millsap (1998). Rejection of
the model would suggest that some other explanation for the group difference in regression inter-
cepts must be sought. Although this test has been available for almost a decade, and many studies
have examined strong regression invariance during this period, no further published examples of
its use have appeared. In other words, while this restrictive model is often assumed to hold and
to explain empirical findings, the model itself is never subjected to any empirical tests.

Case Two: Strong Regression Invariance Without Strict Factorial Invariance

In contrast to the previous example, it is possible to have strong regression invariance while
also using a predictor that is systematically biased in the measurement sense. To illustrate this
case, assume that p = 1 and that a single factor W underlies Y and Z. Within the factor model,
we will assume that the factor loadings, unique factor variances, common factor variance, and
criterion measurement intercept are all invariant:

�k = �, �k = �, φk = φ, τyk = τy, (11)

for k = 1, 2. No restrictions are placed on the common factor means κk or on the predictor
measurement intercept τzk . If the predictor intercept is invariant, strict factorial invariance would
hold for both Y and Z. By permitting the predictor measurement intercept to vary, we permit the
violation of MI for the predictor Z. It can be shown that these assumptions imply that the slopes
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for the regression of Y on Z are invariant, but the regression intercepts may differ (Millsap,
1998). The regression intercepts can be written

β0k = [τy − β1τzk] + [λy − β1λz]κk (12)

for k = 1, 2. From the above expression, it is clear that for any pair of factor means (κ1, κ2),
it is always possible to find a pair of predictor measurement intercepts so that the regression
intercepts are invariant. The group difference in the regression intercepts can be written as

β01 − β02 = [λy − β1λz](κ1 − κ2) − β1[τz1 − τz2]. (13)

Millsap (1998) showed that the first term in brackets is positive as long as �z > 0 and λy > 0.
These requirements are ordinarily met in applications. Suppose then for the sake of argument that
κ1 > κ2. Then as this factor mean difference gets larger, the difference in regression intercepts
also grows. Now consider the measurement intercepts, and suppose that τz1 > τz2, or that the
predictor measure is biased in favor of the higher scoring group. Given the usual case in which
β1 > 0, it is clear that the bias in the predictor operates to reduce the difference in the regres-
sion intercepts. In fact, the bias in the predictor can shrink the regression intercept difference to
zero, resulting in strong regression invariance without MI. The apparent strong invariance in the
regression will mask the measurement bias in the predictor measure.

Unlike the first case in which factorial invariance held but strong regression invariance was
violated, this second case has received no attention in the literature. The factor model underlying
this second case is not testable with p = 1, but is testable with p > 1. Millsap (1998) illustrated
the test in real data for p = 2. In testing the fit of these models, a logical sequence would be to test
for strict factorial invariance first. If that model is rejected, the next model is the one underlying
the case just illustrated. No papers reporting the use of this test procedure have appeared in the
literature since Millsap (1998), although the test is easily done with structural equation modeling
software that performs multiple-group CFA.

Example. To illustrate the two cases just described, suppose that p = 1 and that we have the
following invariant factor loadings, common factor variance, and unique factor variances:

� =
[

.4

.6

]
, φ = 1, � =

[
.24 0
0 .22

]
. (14)

Suppose also that the invariant criterion measurement intercept is τy = .50. Under this parame-
trization, the correlation between Z and Y is .50 in both groups, and the invariant regression
slope is β1 = .41. Without loss of generality, we can fix κ2 = 0 and then manipulate the remain-
ing factor model parameters (κ1, τz1, τz2) to study their impact on the regression intercepts.

We begin with the first case of strict factorial invariance. We set κ1 = 1.0 so that group one
has the larger factor mean. We also set τ21 = τ22 = .50. Theorem 2 in Millsap (1998) establishes
that group one will have the larger regression intercept, and this is in fact what is found:

β01 = .449, β02 = .295. (15)

The parameter values for Y and Z in the two groups are

μ1 =
[

.9
1.1

]
, μ2 =

[
.5
.5

]
, � =

[
.40 .24
.24 .58

]
. (16)

In this case, the use of a common regression line to model both groups will lead to systematic
underprediction for members of group one, and overprediction for members of group two. No
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violation of factorial invariance exists however. The prediction error pattern is produced by the
unique factor variance in the predictor. If there is no unique variance in the predictor, the regres-
sion intercept difference vanishes. One way to reduce the unique factor variance is to improve
the reliability of the predictor, but the unique variance includes more than measurement error.

Turning now to the second case of strong regression invariance, suppose that we keep the
factor means as above, but set the predictor measurement intercepts to

τ21 = .500, τ22 = .124. (17)

The predictor measurement intercept difference favors members of group one: at any given factor
score, members of group one are expected to score higher on Z than members of group two. In
other words, the predictor is biased in favor of group one. The regression lines will be identical
however, with common intercepts and slopes:

β01 = β02 = .449, β11 = β12 = .410. (18)

The parameter values for the Y and Z measures are

μ1 =
[

.9
1.1

]
, μ2 =

[
.5

.124

]
, � =

[
.40 .24
.24 .58

]
. (19)

We can note here that the group difference in means on the predictor is 1.1 − .124 = .976,
and the difference in measurement intercepts is .376. Hence about 38% of the mean difference
is accounted for by the measurement bias favoring group one. This fact is not apparent in the
regression lines however.

Selection Accuracy Implications

In addition to these parametric results, we can investigate what would happen if Z was used
to select individuals under each of the two cases. To answer this question, some distributional
assumptions are needed. We will assume that X = (Y,Z) is bivariate normal within each of the
two groups, with the relevant parameters being given in (16) for the first case, and (19) for the
second case. We also assume that in the combined population that is a mixture of groups one
and two, selection proceeds as a simple top-down selection based on Z. Note that the combined
population is a mixture of two bivariate normal distributions, and does not itself have a bivariate
normal distribution. Millsap and Kwok (2004) describe an algorithm for calculating cutpoints
and quadrant probabilities in the mixture of two bivariate normal distributions under selection.
This algorithm is used to obtain the results reported here.

We first consider how selection under different top-down selection percentages in the com-
bined mixture affects the proportions selected from groups one and two. Table 1 provides this
information. In this table, the first column lists the overall percent selected (selection ratio) in
the combined population (e.g., 5% is top five percent). The remaining columns give the resulting
proportions selected in the separate groups, along with the percentage of group two members
among those selected, all done separately by case. The general trend is that the proportions se-
lected under Case Two for the lower scoring group two are smaller in comparison to Case One.
This trend holds regardless of the selection percentage in the combined population. This result
is the direct effect of the smaller latent intercepts in group two in Case Two, and the resulting
smaller mean on Z. The reduced mean on Z in group two reduces the relative proportion selected
from that group in any top-down selection based on Z.

Next, we consider the accuracy of selection under the two cases. In addition to the parameters
for the measured variables (Y,Z) in (16) and (19), we also know the parameters that determine
the factor score distribution in each case, under an assumption of normality for the factor scores.
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TABLE 1.
Proportions selected in each group under two cases.

Case One Case Two
% Selected G1 G2 %G2 G1 G2 %G2

5% .0847 .0153 15.30 .0952 .0048 4.80
10% .1620 .0380 19.00 .1853 .0147 7.35
15% .3691 .1309 26.18 .4282 .0718 14.36

TABLE 2.
Accuracy measures under 25% selection ratio.

Sensitivity PPV
G1 G2 G1 G2

Case One .7097 .6335 .7626 .5004
Case Two .7785 .4381 .7209 .6309

If we assume bivariate normality for (W,Z) in each group, we can compare Case One and Case
Two to evaluate the impact of the measurement intercept difference on the sensitivity and positive
predictive value associated with selection based on Z. Millsap and Kwok (2004) described the
logic underlying these calculations in this selection context. Consider the bivariate distribution of
(W,Z) and the parameters governing this distribution under bivariate normality. We can regard
W as the quantity that defines the examinee’s actual standing on the latent variable measured
by Z. We will select examinees using the fallible measure Z because W is unknown. If we
select the top 25% of the examinees based on Z in the combined group one and group two, we
thereby identify the subset of the combined population that is the “selected” subset. We can find
the needed cutpoint on Z that would locate the top 25% in the combined population. Similarly,
we can identify a cutpoint on W within the combined population that would mark off the top
25% in the distribution of W . The two cutpoints effectively divide the bivariate distribution of
(W,Z) into four quadrants, which can be labeled as true positives, false positives, true negatives,
and false negatives. This division into four quadrants can be done separately for groups one and
two, using the same cutpoints in both groups. Once the relative proportions in the four quadrants
are known, we can calculate sensitivity and positive predictive value (PPV) separately by group.
Sensitivity in this context is defined as the conditional probability of selection given that the
examinee is above the cutpoint on W (i.e., should be selected). PPV is the conditional probability
that an examinee is above the cutpoint on W , given that they are selected. All of these calculations
can be done once for the model under Case One and once for the model under Case Two.

We will examine results for the 25% selection ratio only. Table 2 gives the sensitivity and
PPV results for Cases One and Two separately. For sensitivity, the sensitivity shows an increase
from Case One to Case Two for group one, and a sharp decrease in sensitivity from Case One to
Case Two in group two. It appears that the group difference in measurement intercepts in Case
Two is reducing the sensitivity of the measure Z. In this sense, the violation of invariance in Case
Two is reducing the accuracy of Z as a selection instrument. An opposite trend is found for PPV,
although not as dramatic. The increase in PPV for group two in Case Two comes about due to
the increased selectivity in that group, as shown in Table 1.

These selection results are clearly only one set of results among many scenarios that could be
considered. Some of these scenarios would only reveal trivial inaccuracies while others would
reveal more dramatic effects. The main point to be conveyed is that an exclusive focus on PI
ignores the larger context that must be considered for a full evaluation of selection accuracy. The
above analysis of selection accuracy could be undertaken for any empirical application with-
out difficulty, using parameter values and distributional assumptions deemed appropriate for the
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data at hand. No such applications will be found in the current literature on selection in applied
psychology however.

Discussion

Having described some of the main results on the relationship between MI and PI, as well
as some numerical examples, we can return to the original question of why these results are
not more widely known and used. In her comments on Borsboom (2006), Clark (2006) argued
that the current literature on this topic is written in unnecessarily technical language, preventing
most psychologists from understanding the material. Borsboom (2006) also commented on the
mismatch between the often highly technical papers that report psychometric advances, and the
generally weak mathematical training of most psychologists. It is certainly true that psychome-
tricians (myself included) could do more to make their findings understood by psychologists, but
I don’t believe that this problem fully explains why the work on invariance is not more widely
used. The level of mathematics required to understand the conclusions offered by this work is
not high; one does not need to follow the details of the proofs to understand their conclusions.
Furthermore, it is not necessary for all or even most psychologists to understand all of the mathe-
matics before the conclusions begin to influence practice. The dissemination of a methodological
advance is usually led by a relatively small group of applied researchers who do have the back-
ground needed to understand the methodology. There are a sufficient number of such researchers
in fields such as industrial/organizational psychology. Structural equation modeling is a good
example of a technical advance that, while initially available only in technical journals, was
eventually disseminated widely and is now part of the standard curriculum for graduate students
in psychology.

A larger barrier to the wider dissemination of recent work on invariance is the conviction
that questions about bias in measurement have already been settled scientifically. This convic-
tion seems to be widely held, at least among many influential psychologists who work in applied
areas. Hunter and Schmidt (2000) conclude that “We trust the literature on test bias, and we
know that the literature on item bias is unsound from a technical standpoint. Thus, on the basis
of our review of this literature, it is our current working hypothesis that there is no item bias”
(p. 157). The literature on “test bias” that is noted here is the literature on predictive invariance;
the literature on “item bias” is the DIF literature. Sackett, Schmitt, Ellingston, and Kabin (2001)
note the “extensive body of research” showing that “standardized tests do not underpredict the
performance of minority group members” (p. 303). In a report by a Task Force created by the
Board of Scientific Affairs of the American Psychological Association, Neisser, Boodoo, Bour-
chard, Boykin, Brody, Ceci, Halpern, Loehlin, Perloff, Sternberg, and Urbina (1996) state that
because intelligence tests are used as “predictors,” the relevant question is “whether the tests have
a predictive bias against Blacks.” They conclude that no such bias exists: “the actual regression
lines for Blacks do not lie above those for Whites” (p. 93). It appears that a scientific consensus
has already been forged on the issue of bias.

What is the foundation of this consensus? It is built upon the large number of predictive stud-
ies that show either invariance in regressions and correlations, or relatively small differences in
regression lines and correlations. In the case of correlation differences, large meta-analytic stud-
ies in the employment sector have not revealed substantial differences in correlations by ethnicity
(Schmidt & Hunter, 1998). Empirical studies of MI have contributed little to this consensus. In
fact, studies of MI are viewed by some as unnecessary in light of the predictive work already
completed (Hunter & Schmidt, 2000). Given the scientific consensus, it is clear why the work on
invariance in measurement and prediction has made few inroads. This work undercuts the foun-
dation for the consensus by showing that bias in measurement is entirely consistent with little or
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no predictive bias. A test that shows predictive invariance, yet is biased from the measurement
standpoint, can produce systematic selection errors when used in selection, as illustrated earlier.

The future of work on invariance in measurement and prediction cannot be known, but it is
probably best to take a long view. The current consensus on bias was formed based on evidence
that spans decades. It may be decades before the work on invariance has comparable impact. The
invariance example contains some lessons for psychometricians who are concerned about the
dissemination of psychometric advances throughout psychology. First, psychometricians should
encourage psychologists to think integratively about measurement. Prediction and measurement
are separable theoretically, but when tests are used in selection, the exclusive focus on prediction
tends to obscure any concerns about the tests as measurements. It is extremely rare to find an
empirical PI study that also examines MI empirically, using the same data. No particular barrier
exists to conducting such studies however. Second, psychometricians should encourage critical
thinking about measurement among psychologists. As noted earlier, the models that underlie
some of the inconsistency between MI and PI are testable in most cases, but these tests are under-
utilized. The selection accuracy analyses that were illustrated earlier could be implemented in
any bivariate prediction study, and would reveal whether the impact of any measurement bias is
trivial or substantial. Finally, psychometricians need to present their research in terms that can
be appreciated by the larger psychological community. Journals such as Psychometrika have an
important role to play in this effort. Important technical work will always be valued, but work
that can ultimately influence practice must be translated into language that practitioners can
appreciate.
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