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   How critical is the concept of the latent trait to modern test theory ?  The appeal 
to some unobservable characteristic modulating response probability can lead to some 
confusion and misunderstanding among users of psychometric technology. This paper 
looks at a geometric formulation of item response theory that avoids the need to appeal 
to unobservables. It draws on concepts in differential geometry to represent the trait 
being measured as a differentiable manifold within the space of possible joint item 
response probabilities given conditional independence. The result is a manifest and in 

principle observable representation of the trait that is invariant under one-to-one 
transformations of trait scores. These concepts are illustrated by analyses of an actual 
test.
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1. Introduction 

   The top panel in Figure 1 displays two three-parameter logistic (3PL) item 
response functions, 

     P(9)=c+(1-c)/(l+exp [-1.7a(O-b)]), a=1, b=-1, 1, c=0.2. (1) 

   The variable 0 determines or modulates the probability P of a correct response 
on a test item, and is often communicated to users of psychometric technology as a 
representation of "ability", "proficiency", or whatever one understands as determin
ing test performance. 

   But values of the argument 0 are both unobservable and undefined, whereas 
values of the function are, at least in principle. For example, we can transform 0 
to an alternative representation of ability that may seem more natural to a test user. 
Suppose that one did not find appealing the fact that 0 in (1) has no lower or upper 
limit ; the lower limit of someone's understanding of calculus could reasonably be 
imagined to be zero, for example, and actualized in practical terms by the perfor
mance of small children on calculus exams. Such a perspective might suggest the 
transformation 

                   y(e)=exp (a/2) (2) 

as a more meaningful representation, and, since probability of success has to remain 
unchanged, one might substitute 0 = 2 In (7) in (1) to obtain 

          P*(y)=c+(1-c)/(1+exp [-1.7a(2 In (y)-b)]). (3)



These functions appear in the second panel of Figure 1, and obviously have some
what different characteristics. The dots, for example, which correspond to equally 
spaced values of 0, are no longer equally spaced with respect to y, even though their 
ordinate or probability values remain the same. 

   On the other hand, traits corresponding to performances which can be perfect, 
such as calculating the derivatives of polynomials, might be better represented on 
the unit interval [0, 1], and this can be achieved by the transformation 

                 ¢(9)=1/[1+exp ( 0)] (4) 

and the consequence of substituting 0=1n [O(1-0)] into (1) is displayed in the third 

panel.

Fig. 1 Two item response functions plotted in terms of latent variable 0 and, after the 

      appropriate re-expressions, as functions of two transformations of 0. Seven values of 

     0 and their corresponding transformed values are indicated by the dots.

   There does not seem to be any reason in most applications other than these 
"natural interpretation" considerations for choosing among these three representa

tions ; all make identical statements about probabilities of success for specific 

individuals on specific items. Of course, we might superimpose on the problem 

some properties that would result in some pleasant mathematical properties ; users



of the Rasch model sometimes appeal to the principle of specific objectivity, expres
sible in terms a functional equation relating item and examinee characteristics 

(Fischer, 1995) as a justification the 0-measure. But, even supposing that the very 
restrictive Rasch model offered an adequate account of item performance, what 
aside from mathematical nicety would recommend the constraint of specific objec
tivity to users ? Nature, someone is likely to quickly point out, is not always 
mathematically convenient. 

   Consequently, P is a very curious mathematical object ; a sort of quasi-func
tion for which the range is clearly defined and anchored in observables, but with a 
domain that can be monotonically transformed at will. Put algebraically, let g be 
any strictly increasing transformation of 0. Then its inverse g-' exists, and if y= 

g(O), then the new item response function P* defined by 

                      P*(y)=P[g-'(y)II 

and the original function P are, for all practical purposes, identical. We shall use 
the notation Pj* to refer to an item response function of an arbitrary argument, and 
reserve P; for the situation where a specific argument continuum is intended. In 
this sense, P,* stands for a class of functions rather than a specific example. 

   Unfortunately, I believe, the latent trait concept is widely misunderstood and 
abused in the community of statistically less-informed consumers of modern test 
analysis technology. My experience, and a careful reading of most of texts in the 
area, has convinced me that there are too many people who imagine that modern 
test theory permits the estimation of ability or proficiency on a numerical scale 
where computing differences, sums, and other quantities is meaningful. 

   Let, for example, examinees Taro, Yoko, and Haruo have values of 0 of -1, 
0, and 1, respectively. Can we say that Yoko is as more proficient than Taro as 
Haruo is than Yoko ? Certainly not in the scales of y and 0. Such a statement is 
only supportable if we have some considerations able to withstand legal scrutiny 
that would determine representation 0, or any linear transformation of it, over all 
other possible candidates. 

   The aim of this paper is to replace the inherently ambiguous concept of the 
latent variable 0 by concepts drawn from differential geometry, with a view to 
expressing the unidimensional modern test theory model entirely . in terms of 
observables. A consequence of this will be a measure of proficiency that is com
pletely invariant under admissible transformations of the latent trait, and for which 
algebraic operations like differencing have a specific meaning in terms of experi
mentally measurable outcomes.

2. The response probability manifold .,i' 

   Suppose now that we plot the values of the two item response functions in 

Figure 1 against each other. We are allowed to do this provided we believe that



the two probabilities of success behave independently of each other given a value of 
0, or that the joint probability of success conditional on 0 is PI(O)P2(0). This is the 

principle of conditional independence that underlies most of modern test theory. 
   Figure 2 is the result, and this plot will be unchanged no matter which represen

tation 0, y, or 0 is used since, after all, these argument values are simply not used 
in the plotting process. We now see that performance on this two-item test is 
represented by a curve within the square of possible pairs of success probabilities. 
Individual performances, such as those of Taro, Yoko, and Haruo, now become 

points along this curve, and we can easily read off their two probabilites of success 
by noting their two coordinate values. 

   This graphical device can be extended to any number of items : A three-item 
test is depicted as a curve within a cube, and an n-item test as a curve within an 
n-dimensional hypercube. The key point is that any position along this curve 
corresponds to an n-tuple of probabilities of success, and thus is estimable from 
data. If Yoko, for example, could be induced under conditions of no memory to 
take the test a few hundred times, her position would be defined to within a quite 
reasonable level of accuracy using elementary statistical techniques.

Fig. 2 The probability values for the two item response functions in Figure 1 are plotted 

      against each other, with the dots corresponding to those in that Figure. Three possible 

     coordinate axes for defining positions along the response probability manifold, assum

      ing that item response functions are monotone, are suggested by the horizontal, vertical 

     and diagonal dashed lines.

The technical definition of a structure like the curve in Figure 2 is a manifold,



and if we, perhaps not unreasonably, assume that each P; is smooth in the sense of 

being an infinitely differentiable function of 0, and consequently that only strictly 

monotonic and smooth transformations g of 0 are possible, the space curve is called 

a differentiable manifold. The Appendix can be consulted for a more careful 

definition. 

   One might use the term response probability space to refer to the n-cube, and 

response probability manifold to refer to the space curve itself, which we shall 

designate as ..e. Curve is essentially the trajectory within joint probability 

space that individuals must follow to move from extreme ignorance to extreme 

knowledge.

2.1 Extrinsic coordinate maps 
   How are we to measure positions along this space curve .,t ? There are many 

possibilities, among which are, to be sure, our latent trait continua 0, 7 and 0. A 
coordinate map is a differentiable one-to-one mapping 0 : -> X from the response 
manifold to an interval on the real line, and its inverse 0-1 determines positions on 
..,e in terms of values within this interval X. We turn now to the task of defining 
a coordinate map. 
2.1.1 Success probability for a fixed item 

   Let it be supposed at this point that each item response function is strictly 
monotone, something that would be true if one restricted oneself to the three

parameter logistic family (1) with positive coefficients a. Monotonicity is often 
assumed in discussions of probabilistic questions connected with item response 
theory (Ellis and Junker, 1995; Junker, 1993; Holland and Rosenbaum, 1986). 
This assumption permits the following two possibilites for coordinate maps, dis

played in Figure 2. 
   We can begin with a simple illustration of a coordinate map by projecting 

points on the curve e on to the first axis (PI values), or indeed any other axis. 
Suppose, for illustration, we use the probability of success on the first item to define 
this mapping. Then X=[0, 1], and coordinate function 0 is the inverse of this 

projection ; that is, the process of locating the point on .,i' that corresponds to a 
given probability value. For example, for Yoko, whose 0 value is 0, the success 
probabilities for all items can be computed as P[Pi 1{P1(0)}]. From (1) we have 
that 

                Pi 1(p)=0.588 In [(p-0.2)/(1-p)]-1, 

so that the j-th coordinate a point on corresponding to a first-item success 

probability of p is 

      P,*(p)=c;+(1-c;)/(1+exp [-1.7a;(ln [(p-0.2)/(1-p)])-1-b;)]). 

Since there is a one-to-one correspondence between positions in and [0, 1] defined 
by this relation, the coordinate map is then essentially the relation between .,' and



the whole real line defined by P 1(p) 
2.1.2 Expected score r 

   An interesting choice of coordinate map from a practical perspective would be 
the projection on the diagonal line in the hypercube, also depicted on in Figure 2. 
Points on this line correspond to values of the function 

               r(8)=P,(O)+P2(B)+" +PI(O), (5) 

or simply the value of the expected total score. This is guaranteed to be a 
differentiable monotone function of curve position by monotonicity, and has the 
distinct advantage of being directly estimable from data, of being symmetric in the 
indices j, and perhaps most importantly of being easily understood by the user 
community. Indeed, Ellis and Junker (1995) have proven that, for all practical 

purposes, total score becomes equivalent to any latent variable 0 as the number of 
monotone items increases without limit. Total score was also used Ramsay (1991) 
to order examinees as a part of a smoothing procedure for nonparametric estimates 
of item response functions, and technique that has been shown by Douglas (1995) to 

provide a consistent estimate of item response functions. 
   The interval X for r is [0, n], and the expression for the j-th coordinate in 

terms of r of a point in .,i' in terms of score value x is then defined by the n functions 

                     P*(x)=Pj[r-1(x)]. (6) 

Although the expected total score is expressible analytically if 3PL curves are used, 
computation of its inverse requires numerical techniques such as linear interpola
tion, but this should not present any difficult computational problems provided the 
slope of the expected total score function is not too close to zero. 

   The use of r as a measure of ability has one useful advantage ; since expected 
and observed scores are on the same metric, one can plot the proportion of exami
nees having a fixed observed score who pass an item on the same plot as the item 
response function, and gives a visual impression of the goodness-of-fit of the model. 
In fact, this sort of display has been used as an alternative to item response function 
estimation for test administrations involving very large numbers of examinees, and 
is called the item-test regression function. Ramsay (1991) exploited this approach 
in comparing goodness-of-fits of nonparametric estimates to parametric fits. 

   Figure 3 displays 25 three-parameter logistic item response functions estimated 
by maximum marginal likelihood estimation (Bock and Aitkin, 1980) from data 
from 2735 examinees for the quantitative subscale of the General Management 
Aptitude Test (GMAT). The left panel of Figure 4 indicates the expected score 
function r=X;P;(O), and the right panel contains the 25 item response functions 

plotted against expected total score. We see that the r measure has eliminated 
regions over which almost all curves are nearly flat. 

    Note, however, that use of the expected total score coordinate map should not 
be seen as justifying the use of observed total score as a means of estimating an



examinee's position on # ; modern test theory has developed more efficient tech

niques such as maximum likelihood and Bayesian estimation.

Fig. 3 Three-parameter logistic item response curves estimated for 25 items in the General 

     Management Aptitude Test estimated for an administrations to 2735 examinees.

Fig. 4 The left panel shows the expected total score r for the GMAT Quantitative scale, and 
     the right panel displays the item response functions as functions of r.

   Each of the coordinate maps 0, y, 0, r, or fixed item success probability P, 

involve constructing a relationship between a continuum X known to be 

monotonically related to position along response probability manifold _.f. In the 

case of the latter two, the continuum is a function of the set of probabilities, Pl, ..., 

P, and therefore firmly anchored in observables in the sense that we can collect 
enough data in principle to independently define to an arbitrary precision location 

on the independent variable dimension. Levine (1984) has explored in a very



systematic way the construction of functions of this nature in his account of what 

he calls formula score theory. 

   We prefer, therefore, these last two possibilities, r and P;, because they are not 

latent and because the merits and demerits of choosing one of them (or some other 

function of response probabilities) are likely to be clearer to users. All five, 

however, are extrinisic to the manifold in the sense that the relationship of position 

on the domain of the coordinate map is only indirectly related to position within the 

manifold itself.

Fig. 5 The left panel shows the relationship between the 0 measure of ability and arc length 

      s, and the right panel plots the item responce functions with respect to arc length.

2.2 The intrinsic coordinate map: Arc length 

   We may also measure ability or proficiency in terms of distance s along the 

manifold from its beginning, termed arc length. This measure is therefore intrinsic 

to the manifold itself, and is in certain senses a "natural" measure. Arc length has 

the following expression in terms any extrinsic map with argument x

SW = f x ~Z [DP;(u)]Z du, (7)

where the notation DP;(u) refers to the value of the first derivative of P; with 

respect to independent variable u, and where the lower limit xo is the lowest 

possible value of x, including possibly  oo. This may also be put more compactly 
as 

                        s=D-111DP11, 

where P is the vector of n item response functions, and D-1 denotes the operation 
of partial integration. Since s is a differentiable and monotonic transformation of 
X, its inverse O=s-1 defines the coordinate map directly. Moreover, the measure 
has the advantage over expected score of not requiring monotonicity of item



response functions, since the integrand in (7) will be nonnegative, and hence the 

integral nondecreasing, even when some DP;(O) values are negative. 

   For example, for the 3PL family, this amounts to

s(e)=J a;(1-cj)Z[exp 1.7a;(u-b;)]Z/[1+exp 1.7a;(u-b;)]4du. (8)

Figure 5 displays in the left panel the relationship between arc length s and 0 for 

the 25-item GMAT test, where the integration in (8) was carried out numerically. 

The item response functions of s are given in the right panel, where we see that 

probabilities of success do not change much for values of s between 0 and 1. An 
item is clearly easy if its probability approaches one for low to medium values of 

s, and difficult if there is substantial change only for very high s values. Figure 6 

shows the probability density functions for ability for the GMAT test in terms of 

both 0 and arc length. These probability density functions are a result of applying 

a kernel density smoothing procedure to the values of 0 estimated by maximum 

likelihood for each of the 2735 examinees.

Fig. 6 The left panel shows a kernel density estimate of the probability density function for 

     the maximum likelihood estimates of the 0 measure of ability for the GMAT test, and 

     the right panel plots the probability density with respect to arc length.

   Another reason to prefer arc length as an ability measure is that certain 
important quantites are considerably simplified when expressed in terms of s. The 
length of the tangent vector DP*(s) is automatically unity ; I~ DP*(s) II =1 for all s. 
This is because, by the chain rule and (7) 

             DP;(x)=DP,*(s)Ds(x)=DP,*(s) II DP(x) II 

so that 

                 DP,*(s)=DP;(x)lII DP(x) II 

   From a practical perspective DP;(s) is item discriminability, the change in 
success proability for item j that will result from a small increase in s, and because



this is bounded below by 0 because of monotonicity and above by 1, DP;(s) can be 

interpreted as a scale-free "importance" measure of improving one's performance 

by Js in the same manner as for a correlation coefficient. Figure 7 displays the 

DP;(s) curves for the GMAT test. 

   The practical problems that confront test developers can be dealt with in terms 

of arc length measure without the need to assume a fixed metric for 0. It is easy 

to show that there is a one-to-one correspondence between arc length along a 

manifold ..i'o within a subspace .oo of a response probability space and arc length 

along the manifold .' within the over-space .9 provided that all item characteristic 

functions are strictly monotonic. This implies that one can construct an individ

ual's position in .,+f knowing his position within ..moo defined by the subset of items 

administered, for example, in a computerized adaptive testing situation. 

   Similarly, differential item functioning (DIF) results in manifolds for subgroups 

that do not belong to the same trajectory, and may as easily be assessed in terms 

of s as in terms of any other measure. But it is interesting to speculate whether 

two non-overlapping manifolds for males and females, for example, which are 

nevertheless of the same length and terminate in the same place should be regarded 

as really problematic. This issue is considered further at the end of the paper.

Fig. 7 The functions DP;(s), the impacts of small increases in arc lengh on item success 
      probabilities. These have unit sums of squares.

2.3 Item and test information functions 

   The test information function is essential to test appraisal since it is for modern 

test theory the counterpart of reliability in classical test theory. Defined relative to 

an arbitrary ability measure 0 it is



I(0)=~ [DP,(e)]2/[Pj(e)(1-Pi(e)] (9)

The error standard deviation function

6(e)=1/ I(9)

is the lowest achievable standard error of estimate of an individual's ability given 

that his true ability is 0, and therefore assesses directly the stability of an ability 

estimate. However, since 1(0) depends upon the first derivative of the item 

response functions with respect to 0, it is not invariant under monotone transforma

tions. It's re-expression with respect to transformed value y=g(e) is

I*(y)=I(0)1 [Dy(0)]2, (10)

so that for arc length measure it becomes simply

I*(s)=I(e)/Z DP,?(e)=I(e)l II DP(O) II 2. (11)

Figure 8 displays the test information functions for the GMAT test relative to the 

0 measure and arc length.

Fig. 8 The left panel displays the test information function for the GMAT test with respect 

      to B measure, and the right panel with respect to arc length measure.

3. Extensions and discussion 

   The discussion of .,, so far has been predicated on items being scored di

chotomously. How might the hyper-cubic probability response space concept be 

extended to items involving more than one category of response ? Although this 

paper confines itself to considering two-state items, we can get some intuitions by 

considering a test consisting of a three-category item and a two-category item. 

The three response probabilities for the former must, of course, sum to one, and 

consequently they define a point lying within a two-dimensional equilateral triangle 

having unit sides. Crossing this structure with the unit interval representing



success on the second item, the result is a prism with triangular ends and a square 

base. Similarly, two three-option items define a four-dimensional structure having 

three-dimensional faces that are prisms. For further discussion of these concepts, 

one can consult Ramsay (1995), who uses these notions to define a non-dimensional 

item analysis technique. But however complex and unimaginable the resulting 

geometry of the response probability space may be, the response probability 
manifold ' remains a space curve, or a smooth one-dimensional structure within 

this space. 

   When items are polytomous, the concept of monotonicity no longer plays a 

particularly important role either theoretically or practically. At this point arc 
length possibly becomes the most obvious manifest measure of ability. Its expres

sion in terms of a set of item response functions Pjm(x) is now

s(x)- Jx0 V j E [DPjm(u)]2 du. (12)

   The concept of .,,' as a space curve obviously has many interesting extensions. 

It could be postulated to be a manifold of dimension K, meaning that there exists 

a family of coordinate maps that are diffeomorphic to RK. Or, it may be that the 

concept of a manifold of fixed dimensionality should be replaced by something 

broader, such as manifolds for which dimensionality changes smoothly from one 

value to another as a function of position within ,e. It might be argued, for 

example, that examinees occupying positions in the response probability space far 

from some vertex representing ideal behavior exhibit higher dimensional variation 

than those in its immediate neighborhood. Ramsay (1995) has described a tech

nique for estimating the response probability space position of individual examinees 

using similarity-based smoothing that seems promising in terms of identifying more 

complex structures of this kind. 

   The main goal of this paper has been to offer a mathematically unambiguous 

account of item response theory. This will appeal, it is hoped, to those who share 

the author's uneasy feeling about exactly what a latent trait "means", especially 

when interacting with end-users of psychometric technology who lapse very easily 

into imagining that item response theory has provided a metric for measuring 

ability where none existed before. The latent trait concept is inessential to item 

response theory ; it is the geometrical notion of a manifold within probability 

response space that is critical. A particular realization of a set of item response 

functions P*(x) is no more than one among an arbitrarily large number of coordi

nate maps. The existence of a coordinate map is critical to the concept of a 

manifold, but the characteristics of a specific map are incidental. 

   It is the goal of the theory of differentiable manifolds to describe the character

istics of a particular manifold in ways that are invariant with respect to particular 

choices of coordinate map. Unidimensional item response theory presents the 

simplest of cases : a one-dimensional space curve. The natural and, it can be



shown, only invariant characterization is in terms of arc length, s. Measured in 

terms of arc length, ability does indeed have metric properties : sums and 

differences of arc lengths have clearly defined meanings in terms of navigating 

within the probability response space along curve e. Moreover, there is nothing 

whatever that is latent about arc length ; given appropriate data from replicated 

responses, one can estimate arc length empirically arbitrarily well. The methods 

of Ramsay (1995) serve this end rather well even when responses are not replicated. 

   Nevertheless, one can still ask whether the metric implicit in the arc length 

measure would be actually " interesting to a non-psychometrician. Perhaps not. 

After all, what one really wants is some measure of the effort or cost of moving 

from position s1 to position sz along rather than merely the distance between the 

two points. How much time does my child have to spend in school to reach the 

level of proficiency represented by a specific value s ? How much money must be 

fed into a city's educational system to raise the average proficiency of a specific 

target group from s1 to s2 ? These, it would seem, are the really interesting metric 

questions, and they cannot be resolved within the context of test data alone.

                          Appendix 

   The Appendix offers a technical definition of a differentiable manifold, follow
ing Boothby (1975). 

   An m-manifold ..+Y is a space that is locally Euclidean, meaning that each point 
has a neighborhood that is topologically equivalent or homeomorphic to an open 
subset of Rm. It must also possess the more primitive properties of being separable 
in the sense that any two distinct points have non-intersecting neighborhoods, and 
of having a countable basis of open sets. A line or curve segment is a one-manifold 
that is globally Euclidean, but a circle is an example of a one-manifold that is not. 
But note that there is nothing in the definition of # that requires it to be a subset 
of or to be embedded in a Euclidean space of higher dimension. 

   Let U be an open set of .' and let 0 : U--* Rn be a homeomorphism from U to 
an open subset of Rm, termed a coordinate map. Each pair (U, 0) is called a 
coordinate neighborhood. Let (V, 0) be a second coordinate neighborhood such 
that the intersection Un V is nonempty. Then for any point pe U n V there are 
two coordinate map values, q(p) and 0(p). Since both coordinate maps are inverti
ble because they are homeomorphisms, one can move from one map value to the 
other by the two transformations 0.0-1 and 0.0-1. These two transformations are 
themselves homeomorphisms from one open subset of Rn to another, and in effect 
define two changes of coordinate system for U f1 V. 

   A diffeomorphism is an infinitely differentiable homeomorphism between two 
subsets. Two coordinate neighborhoods (U, 0) and( V, 0) are C°°-compatible if the 
transformations 000-1 and 0o0-1 are diffeomorphisms in addition to being 
homeomorphisms. That is, one can change from one coordinate sysem to the other



infinitely smoothly. 
   Finally, a differentiable manifold v possesses a family of coordinate neighbor

hoods (Ua, q5a) such that 
    1. the Ua cover .,i', 
   2. any two intersecting coordinate neighborhoods in the family are C°°-com

      patible, and 
   3. any coordinate neighborhood (V, 0) compatible with every (Ua, Oa) with 

      which it intersects is also in the family.
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