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1 Reliability

Reliability is the extent to which the test would producesistent results if we gave it again under
the same circumstances. This seems like a simple idea: walgwee give a test if the results were
not likely to replicate if we gave the test again? It is alsaraportant idea statistically: when we
use tests that are unreliable, statistical hypothesimteist less powerful, correlations are smaller
than they should be, etc.

It turns out that a basic discussion of reliability can bedohen a very simple mathemati-
calstatistical model, and for that reason this section is moaghamatical than most of the rest
of this essay. | hope that the main points of this section krar@ven if you “read around” the
places that are more mathematical. However, in reading aisee ldiscussion in the next several
subsections, please keep in mind:

e The model being discussed, thiassical test theorynodel, is so simple as to hardly ever
be plausible, and yet, hardly ever falsifiable. Therefolthoaigh it is useful for developing
important insights about the role and consequences obilktya and also for developing
guantitative indices of reliability, its conclusions mi& treated with a grain of salt. It is a
fine first approximation in many settings, but there is alnabsfiys a more refined model
that will produce a clearer picture of the functioning of thst.

¢ Classical psychometrics is known famously for two mantras:

— Higher reliability is always better!



— A test cannot be valid unless it is reliable!

In reading the next several sections you should begin to eeaithese mantras come from.

However, you do not have to believe the mantras. | think thatany “high-stakes ranking”
settings they make sense. But in many other settings thatarbigh stakes or may not
involve linear ranking they may make less sense. In manyoeary settings fo example,
using a test that is face- and content-valid but less redjabhy be the only way to go.

Finally it is worth noting that, just as Messick (1998) ardukat validity is not a property of
the test but rather a property of the test score that shoutédmnsidered in each new setting in
which that test score will be used, Thompson (2003) has drthat reliability also is a property of
the test score, not the test, that should be reconsiderextimresw setting in which that test score
will be used. This is healthy: educational tests are fraggéruments, and it is prudent to consider
whether a test that will be used in a setting other than thelromeénich it was developed or last
used, will continue to have good theoretical (validity) atatistical (reliability) properties.

1.1 Classical Test Theory

Almost all discussions of reliability in testing begin witthat is known axlassical test theory
(CTT), also known as “classical true score theory”. CTT is not a-jgrovable scientific model,
rather it is a statistical model for test scores. GulliksE®5Q) attributes the basic form of CTT to
Charles Spearman in two 1904 papers. Novick (1966) made @felfer modern readers, and a
detailed modern treatment is given in Lord and Novick (1968)

The “theory” is easy to state: Le¢; be the score that persomeceives on a test on occasibon
CTT supposes that

Xi = T + &yt (1)

whereT; is the person’s “true” score arfg}, is an error or noise term accounting for the fact that
transient influences may forc§ # T;. For example, you may take the same algebra test two
different timest(= 1 vst = 2): you may get lucky or unlucky in @fierent ways each time (terent
&ii's for you); but your underlying proficiency at algebra mayt oshange (samé;). CTT also
assumes

e X is unbiasedE[X|T;] = T;, and henc&[&;] = 0;
e &is uninformative: CovTj, &) = 0.

Statisticians will recognize Equation 1 as a kind of errorsariables, variance-components, or
one-way random{gects ANOVA model.

Those interested in measurement should note that the assaspf unbiasedness and unifor-
mativeness basically mean that the test seoigalreadyvalid for the true scord. This is a very
important point: CTT can say almost nothidgectly about validity because CTT already assumes
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that X is a valid measure of something, namalyit might not be a valid measure of what you
want, but it is a valid measure of something).
The main use of CTT is to gain intuition about theets ofE in attempting to measurfe with
X. If we let
% =Var(Xy), o2 =Var(T,), ando? = Var (&)

then

o4 = Var(X)
= Var (T + &)
= Var (T|) + 2Cov (Ti,&t) + Var (SI)

_ 2 2
= o7 +og

because CoVT, &) = 0.

A big difference between CTT and the usual one-way randdects ANOVA problems is
that typically we only get to observe one replication pet:déht is, the person only takes the
test one time. Thus the model cannot really be fitted (orffatyi with data. Nevertheless, CTT
provides a useful framework to think about the decompasitibvariability in observed scores
into components of variability due to the underlying coansty and due to transient measurement

error:

0% =03+ 02, (2)

1.2 Test-Retest Reliability

Reliability is supposed to be about how “repeatable” thelte®f a test are. So let’s consider the
same test on two ffierent occasiorts

Xi = Ti+&n
Xo = Ti+&p
The covariance between the two test scores is
Cov (Xi1, Xi2) = Cov(Ti+Ej1,Ti + Epp)

= Cov (T;,T;) + Cov (T, Ei2) + Cov (Ei1, Ti) + Cov (Ei1, Ei2)
= 02+0+0+0

1So we are carefully controlling the administration of thet ten each occasion so that the testsstietly parallel:
exactly the same true scoréss and exactly the same error variano%son both occasions, and the erréson one
occasion are not informative about the true scores or eorthe other occasion.



Table 1: Typical interpretations of test-retest reliaili

Test-retest Proportion of retest  Typical
Reliability variance explained Interpretation

0.95 0.90 Excellent
0.90 0.81 Good

0.80 0.64 Moderate
0.70 0.49 Minimal
0.50 0.25 Inadequate

And the correlation between these two test scores is:

Corr (Xi1, Xi2)
Cov (Xi1, Xi2)

vVar (Xi1) vVar (Xi2)

2
_ 97
[2 [2
O'X O'X
2
o1

= — )

Ox

'xx

The quantityrxx = 02 /0% is called the (test-retes@liability cogfficient
Another way to relateXi; to X, would be to build a linear regression model

Xi2 = bo + b]_Xi]_ + &j

The proportion of the variance &, explained byX;, in this regression is thequared correlation
ray (e.g. Fox, 1997, pp. 9D). For example, Table 1 displays several values for rditgtzind the
corresponding proportion of retest variance explainezh@with typical verbal interpretations.

1.3 Standard Error of Measurement

Anotherimmediate application of the reliability ddeientrxx is in computing confidence intervals
for T; from X;. From Equation 2 we see that

o2 = -0t
= ox(1-0%/0)
= Ui(l—l’xx)
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Figure 1: Population Sy indicates spread of scores in the population (solid linEM$ndicates
spread of scores measureing the same true score (dashed line

Thestandard error of measurement (SEMY}he square root of this,

SEM= oy Y1 - rxx (4)
and thus an approximate 95% confidence intervalfavould be
(Xi — 2x SEM Xi + 2 x SEM).
The SEM should not be confused with the SD of the test scores:
e oy = SD of test scores. Describes variation of test scores in tiiderpopulation.

e ox V1 - rxx=SEM of the test. Describes variation of each test score arthencorrespond-
ing true score.

Figure 1 contrasts the distribution of observed scores enpibpulation (solid line) vs. the
distribution of observed scores around measuring the samestore (dashed line). The larger
the reliability ryx, the smaller the spread of observed scores around the pondisg true score.
However, the spread of scores in the population never geafiesnthanc2.



1.4 Reliability and Statistical Methods

Reliability affects statistical tests, generally by making them less golvarhis generally means
you need a larger sample size to detect the same Sexet @vith unreliable measures.

For example, suppose we want to compare ftleceof an educational intervention in a treat-
ment group, vs. standard practice in a control group, on aiteg test. The dierence between
the mean test scores in each group will be significant if

X-Y
{552+ 182

wherec, is the appropriate level-cutdf for the t-test. Assuming for simplicity thanh = n and
inverting this expression we get that the sample sireeach group should be at least

c:S?
(X-Y)?

> C,

n>2

Now suppose that we expect to see fiedence ofX — Y = 10 points in mean test scores between
the two groups. We know that
S? ~ E[S?] = 0% = 0% /rxx

and so the sample size in each group should be, approximately

2
szzUT

> .
N 100,

(5)

All other things being equal, the sample sizaeeded for a significant resultilsversely propor-
tional to ryx, SO again it pays to makex as large as possible.
Reliability also attenuates (reduces) correlations betwariables. Suppose

(6)

X = TX4+8&%
Y = T'+&

and suppose th&s are not correlated with each other or with is. Then Cov ¥, Y) = Cov (TX, TY),
so that

Cov(X,Y) _ Cov(T*,T")

Corr(X,Y) =
Ox0vy Ox0vy
T, TY
SOOI  corr (X, TY) Py (7)
OxO0y
This says that



e The maximum of CorrX, Y) is the correlation of their true scores;
e How close we come to the maximum depends on how high the iigiedof X andY are.

This phenomenon is sometimes called tioerelation attenuatiorproblem because when we use
observed scores to compute correlations, they are atesht@ward zero relative to the correlation
we would have gotten by using the true scores. A similar phesmon occurs with regression
analyses involving unreliable test scores.

1.5 The Hfect of Test Length
The basic formula in Equation 2 says that

0% =03+ 02
and we knowrxx = o2/c%. Usually tests are composed of individual items, and we didike
to know what is the fect of lengthening or shortening the test. If we produce atestX® that

is k times as long a¥, using items with independent errors and the same true 3cdiree new
variance decomposition will be

2 _ 2 2
ow =01 +og/k

In that case the reliability of the new test will be

2 2 2
XX O % O'% + o%/k k0'12— + o% Kryx + Z_% Kryx + 1 — rxx
X
_ K- I'xx (8)
1+ (k - 1) - I'xx

Equation 8 is called the Spearman-Brown formula. It saygxample that a modestly reliable
test can be made dramatically more reliable by doublingertgth. On the other hand, a test 10
times as longk = 10 yields much less than a 10-fold improvement in reliapi#t graph ofr ) vs.
Ixx IS shown in Figure 2.

1.6 Estimating Reliability

Clearly it would be nice to have an estimate of test-retdsthidity. There are several possibilities:

e Test-retest correlationYou can give the same test twice to the same group of studemds
compute the correlation between the two test scores. Thipravide a plausible estimate
as long as no indivdidual ffernces in (un-)learning takes place between test occasions
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Figure 2: Hfect of lengthing the test according to the Spearman-Browmda. Initial reliability
is ryx = 0.55.

¢ Alternate forms correlationf you have two diferent forms of the same test (say, you have
20 items and you put 10 on one test form and 10 on another tes),fgou can give both
forms to the same people and compute the correlation bettieetwo form scores. This
will also provide a plausivle estimate of reliability, thgtuit will likely be lower than the
test-retest correlation. Also it depends strongly on tlseianption that you were successful
at creating twovery equivalent versions of the test, usingfdrent items.

e Split-Half correlation. After administering the test you have, split the items up itwo
equal halves. The correlation between total scores on thdalves is a plausible estimate
of reliability. By itself this is probably a lower bound. Opessibility to improve itis to apply
the Spearman-Brown formula (Equation 8) whtk- 2, if one believes the two half-tests are
really equivalent and have independent error terms.

e Cronbach’s AlphaA better estimate of split-half reliability would be to &kll the possible
splits into equal halves, and average all of the split-halibilities. This turns out to be
equivalent to Cronbach’s (1951) Alpha ¢heient:

n Y Var(X)|  n [2 Xz Cov (X, X))
e et ©)




for a test ofn items, Xy, ..., X,. One can show that is a lower-bound omyx under mild
conditions, (see Novick and Lewis, 1967, for these and alké&ails), and equals x under
somewhat stronger conditions. With a little algebra, omealao show that

nr

wherer = T 2 Ziej COrr (X, X)) is the average inter-item correlation, which looks quite
similar to the Spearman-Brown formula (Equation 8).

Thus we see that dnternalmeasure of reliability, Cronbach’s alpha, can be used tmas

an externalmeasure like test-retest correlation. There are many ti@mgon the idea of
using internal consistency to estimate test-retest ctamsig. Some of the more famous ones
are Kuder & Richardson’s KR20 (a special case of Equationnd) KR21 formulae, and
more general forms of Equation 9 due to Guttman.

Trochim (2005, 2006) discusses situations in which eacthefabove estimates is more or less
appropriate.

1.7 Other Reliability Issues
1.7.1 Other test reliabilities

There are many reliability or scalability cieients that account for the particular kind of data one
is working with. For example if the items all have dichotora@esponses (0 or 1, for incorrect and
correct, say) then Mokken (e.g. Mokken, 1997) has suggestie) Loevinger'sH codficient as

an index of reliability
b & iz COV X, X;)
Z Zi#j COVmax(xi’ xj)
where Covnax(Xi, Xj) is the maximum covariance betwegnandX; that preserves the counts of
wrongs and rights for each item separatelfhis is reminiscent of Cronbach’s alpha (Equation 9)
and some prefer to use it because alpha can greatly unaeaésty « if the items are dichotomous

and the probabilities of success vary greatly from itememit
Lord (1980) and others have suggested that the basic laldbrmula in Equation 3,

(10)

o2 _ Var(T)
o2 Var(X)’

'xx =

2This turns out to be easy to compute, since it occurs whenténesi areGuttman itemsWhenever the harder
guestion is answered correctly, the easier one is too.



can be generalized beyond the latent variable model in Equatby observing that, sinc¥ is
unbiased foiT, E[X|T] = T. Substitutinge[ X|T] for T above we get

_ Var (E[X|T])
X7 var(X)

which can be used for any latent variable model at all—evemfodels in whichE[X|T] # T.
This leads to a kind of adaptation of CTT to whatever modelisrtgaling with, so that all of the
formulae above—e.g. those in Section 1.4—aggygproximatelyto the new model.

An alternative approach is to take the new latent variablelehat face value and develop
methodology for hypothesis testing, correlations witheotmeasures, etc. that are exact for that
model. This is an approach that has been advocated in maetrideoretical and applied psycho-
metric work, for example, see Mislevy (1991), Fox and Gl&30@, Mariano and Junker (2006),
and Schofield et al. (2006). However it is more cumbersomeusu@lly requires collaboration
with a quantitative researcher familiar with both modeatistics and measurement.

1.7.2 Inter-rater reliability

A different problem that also goes by the name “reliability” ig tifanter-rater reliability. We can
again build a model like Equation 1,

Ri = Ti + & (11)

where nowRy is the rating by th&" judge of theé'" student’s responsg; is the student’s true score
as before, anéli is rating error, again subject to unbiasedness and unifioveness assumptions.
In this setting we are likely to be able to assign severalsaterate each person’s response and so
the variance components

oh =02+ 02, (12)
are usually identifiable and estimable under various praltiata collection designs. The resulting
reliability codficient is called thentraclass correlation

2
Ot

(13)

0_2
ICC=— = 5.

O'R O'T + O'S
The classic paper on this sort of inter-rater reliabilitySkrout & Fleiss (1979). They discuss
several designs and several estimators of the ICC. Mariaiab €2006) reviews several recent
approaches that try to address inter-rater reliabilityhi@ ¢ontext of more complex and realistic
latent variable models.

Other approaches involve looking at rater agreement. Fameje if a response can be rated in

two or more discrete categories we might look atéRact agreement

#{times raterk; andk;, agree
#{times raterk; andk; rated together

Pagree =
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or Cohen’s Kappde.g. Landis and Koch, 1977, discuss statistical propedi&appa, as well as
interpretations similar to Table 1), which corregtg.e. for chance agreement:

_ pagree_ Pchance

1- Pchance

wherepshance= 2.¢ P[ raterk; rates in category|] x P[ raterk; rates in category ], or even just the
usual product-moment correlation between the ratgrg, While all three of these measures are
recommended anolr criticised in various corners of the literature (e.g.igpendoft and Fleiss,
1978), looking at them together is often useful in identifyraters that need more training, items
that are dificult to rate consistently, etc.

1.7.3 Generalizability theory

The basic idea of both Equation 2 and Equation 12 is to decemfyee variance of an observed
score into a sum of variance components, one for true scate@aa for errorGeneralizability
theory (GT)extends this decomposition in order to account for sevefidrént sources of error
together. For example, raters and items might be considegather in a single GT model, so that
the dfects of increasing the number of test items, as in Equati@am@®,increasing the number of
raters per item (analogous to Equation 8) can be considegediter. Otherféects and interactions
can also be considered. The classic text is by Cronbach(@©a12); a recent account from a major
methodologist in this area is Brennan (2001); and some tetempts to embed GT ideas in other
psychometric models are presented by Patz et al. (2002).

GT models are formally equivalent to mixeffextgvariance components models, and can be
estimated by modern computational Bayes methods such asoM&hain Monte Carlo (e.g.
Mao, Chin and Brennan, 2005), as well as by classical ANOVA @astricted maximum likeli-
hood (REML) methods (e.g. usifROC VARCOMP or PROC MIXED in SAS,VARCOMP or repeated-
measures ANOVA in SPSS, earcomp or 1me in R or Splus).

1.7.4 Item analysis

In addition to evaluating whole tests, it is necessary tostoiet the tests. For writing cognitive
items, Haladyna (1994) and Stiggins (1994) are basic ressuOnce the items are written, we
need to determine whether they “hang together” as a test. Viity should play a large role in
this process.

In addition several quantitative measures can be used @sts&dms that contribute to high
reliability of the total test. This process is called “itemadysis”, “scale construction”, or some-
times just “scaling”. Generally speaking we are looking ifems X; that depend on a single,
unidimensionallatent variable, analogous ToEquation 1. We do this for two reasons: first, such

3Unidimensionahas both a technical meaning and an intuitive meaning hehriically, a unidimensional vari-
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items will generally increase the reliability of the testdasecond, a test composed of unidimen-
sional items (those that depend on a unidimensional latenale) are easier to describe and
interpret.

A drawback of this approach is that some important congtracé not unidimensional; for
such constructs this approach tends to make tests that@reatoowly focused to be fully valid.
For such cases, more complex quantitative methods arereelqéiortunately, many constructs can
at least be broken down into unidimensional parts—for exaMgAEP measures mathematics
achievement in five more-unidimensional areas, numbergpties and operations, measurement,
geometry, data analysis and probability, and algebra—atoetiinidimensional test can be written
for each part.

Here | only mention four of the simplest methods for selegtrset of items that hang together
in a unidimensional scale.

¢ Inspect a table of means and variances for each item, toifigéeins that are too easy, too
hard, or not variable across examinees. Whether or not to #tesse items will depend on
the purpose of the test

¢ Inspect a matrix of correlations (or percent agreement§ajren’sk’s, etc.) between all
pairs of items

— To find coding errors and fix them (e.g. all correlations stdad positive)

— To find groups of items that correlate amongst themselvesibutvith other items
(should these be removed to another subscale?)

e Compute thepoint biserial correlationof each item, that is, the correlation between that
item and the total test score. Or compute dieéeted point biserial correlatigrwhich is the
correlation between that item and the total of dtleeritems on the test. The point-biserial
correlation turns out to be equivalent to the test statfsti@ two-samplé-test comparing
total score for students who got the item “right” vs studevit® got it “wrong”, so the-test
(onn- 2 degrees of freedom, iif students took the test) can be used to look for “significant”
point-biserials.

e Analogous to théd codficeint in Equation 10, we can calculate an item-wisby summing
over just on index:
2. Cov (X, X))

' 3 CovimadXi. X))
this can be used like the point-biserial to select items atrale. Sijtsma and Molenaar
(2002) discuss an item selection and statistical testengéwork.

able is one whose values are numbers on the real line. krglyith unidimensional variable corresponds to a construct
that is easily and somewhat narrowly characterized, arig/thecould measure the “amount of” on an ordinal, interval
or ratio scale. For example, “Math proficiency” in genergisbably not unidimensional, but “proficiency in seventh
grade algebra” might well be.
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