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1 Reliability

Reliability is the extent to which the test would produce consistent results if we gave it again under
the same circumstances. This seems like a simple idea: why would we give a test if the results were
not likely to replicate if we gave the test again? It is also animportant idea statistically: when we
use tests that are unreliable, statistical hypothesis testing is less powerful, correlations are smaller
than they should be, etc.

It turns out that a basic discussion of reliability can be based on a very simple mathemati-
cal/statistical model, and for that reason this section is more mathematical than most of the rest
of this essay. I hope that the main points of this section are clear even if you “read around” the
places that are more mathematical. However, in reading the basic discussion in the next several
subsections, please keep in mind:

• The model being discussed, theclassical test theorymodel, is so simple as to hardly ever
be plausible, and yet, hardly ever falsifiable. Therefore, although it is useful for developing
important insights about the role and consequences of reliability, and also for developing
quantitative indices of reliability, its conclusions mustbe treated with a grain of salt. It is a
fine first approximation in many settings, but there is almostalways a more refined model
that will produce a clearer picture of the functioning of thetest.

• Classical psychometrics is known famously for two mantras:

– Higher reliability is always better!
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– A test cannot be valid unless it is reliable!

In reading the next several sections you should begin to see where these mantras come from.

However, you do not have to believe the mantras. I think that in many “high-stakes ranking”
settings they make sense. But in many other settings that arenot high stakes or may not
involve linear ranking they may make less sense. In many exploratory settings fo example,
using a test that is face- and content-valid but less reliable, may be the only way to go.

Finally it is worth noting that, just as Messick (1998) argued that validity is not a property of
the test but rather a property of the test score that should bereconsidered in each new setting in
which that test score will be used, Thompson (2003) has argued that reliability also is a property of
the test score, not the test, that should be reconsidered in each new setting in which that test score
will be used. This is healthy: educational tests are fragileinstruments, and it is prudent to consider
whether a test that will be used in a setting other than the onein which it was developed or last
used, will continue to have good theoretical (validity) andstatistical (reliability) properties.

1.1 Classical Test Theory

Almost all discussions of reliability in testing begin withwhat is known asclassical test theory
(CTT), also known as “classical true score theory”. CTT is not a (dis-)provable scientific model,
rather it is a statistical model for test scores. Gulliksen (1950) attributes the basic form of CTT to
Charles Spearman in two 1904 papers. Novick (1966) made CTT safe for modern readers, and a
detailed modern treatment is given in Lord and Novick (1968).

The “theory” is easy to state: LetXit be the score that personi receives on a test on occasiont.
CTT supposes that

Xit = Ti + Eit (1)

whereTi is the person’s “true” score andEit is an error or noise term accounting for the fact that
transient influences may forceXit , Ti. For example, you may take the same algebra test two
different times (t = 1 vst = 2): you may get lucky or unlucky in different ways each time (different
Eit ’s for you); but your underlying proficiency at algebra may not change (sameTi). CTT also
assumes

• X is unbiased:E[Xit |Ti] = Ti, and henceE[Eit ] = 0;

• E is uninformative: Cov (Ti ,Eit) = 0.

Statisticians will recognize Equation 1 as a kind of errors-in-variables, variance-components, or
one-way random-effects ANOVA model.

Those interested in measurement should note that the assumptions of unbiasedness and unifor-
mativeness basically mean that the test scoreX is alreadyvalid for the true scoreT. This is a very
important point: CTT can say almost nothingdirectlyabout validity because CTT already assumes
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that X is a valid measure of something, namelyT (it might not be a valid measure of what you
want, but it is a valid measure of something).

The main use of CTT is to gain intuition about the effects ofE in attempting to measureT with
X. If we let

σ
2
X = Var (Xit ) , σ

2
T = Var (Ti) , andσ2

E = Var (Eit )

then

σ2
X = Var (Xit )

= Var (Ti + Eit)

= Var (Ti) + 2Cov (Ti ,Eit) + Var (Ei)

= σ2
T + σ

2
E

because Cov (Ti ,Eit) = 0.
A big difference between CTT and the usual one-way random-effects ANOVA problems is

that typically we only get to observe one replication per cell: that is, the person only takes the
test one time. Thus the model cannot really be fitted (or falsified) with data. Nevertheless, CTT
provides a useful framework to think about the decomposition of variability in observed scores
into components of variability due to the underlying construct, and due to transient measurement
error:

σ2
X = σ

2
T + σ

2
E. (2)

1.2 Test-Retest Reliability

Reliability is supposed to be about how “repeatable” the results of a test are. So let’s consider the
same test on two different occasions1:

Xi1 = Ti + Ei1

Xi2 = Ti + Ei2

The covariance between the two test scores is

Cov (Xi1,Xi2) = Cov (Ti + Ei1,Ti + Ei2)

= Cov (Ti ,Ti) + Cov (Ti ,Ei2) + Cov (Ei1,Ti) + Cov (Ei1,Ei2)

= σ2
T + 0+ 0+ 0

1So we are carefully controlling the administration of the test on each occasion so that the tests arestrictly parallel:
exactly the same true scoresTi ’s and exactly the same error variancesσ2

E on both occasions, and the errorsEit on one
occasion are not informative about the true scores or errorson the other occasion.
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Table 1: Typical interpretations of test-retest reliability.

Test-retest Proportion of retest Typical
Reliability variance explained Interpretation

0.95 0.90 Excellent
0.90 0.81 Good
0.80 0.64 Moderate
0.70 0.49 Minimal
0.50 0.25 Inadequate

And the correlation between these two test scores is:

rXX = Corr (Xi1,Xi2)

=
Cov (Xi1,Xi2)√

Var (Xi1)
√

Var (Xi2)

=
σ2

T
√

σ2
X

√

σ2
X

=
σ2

T

σ2
X

(3)

The quantityrXX = σ
2
T/σ

2
X is called the (test-retest)reliability coefficient.

Another way to relateXi1 to Xi2 would be to build a linear regression model

Xi2 = b0 + b1Xi1 + εi

The proportion of the variance ofXi2 explained byXi1 in this regression is thesquared correlation,
r2

XX (e.g. Fox, 1997, pp. 90ff.). For example, Table 1 displays several values for reliability and the
corresponding proportion of retest variance explained, along with typical verbal interpretations.

1.3 Standard Error of Measurement

Another immediate application of the reliability coefficientrXX is in computing confidence intervals
for Ti from Xi. From Equation 2 we see that

σ2
E = σ

2
X − σ2

T

= σ2
X(1− σ2

T/σ
2
X)

= σ2
X(1− rXX)
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Figure 1: Population SDσX indicates spread of scores in the population (solid line); SEM indicates
spread of scores measureing the same true score (dashed line).

Thestandard error of measurement (SEM)is the square root of this,

SEM= σX

√

1− rXX (4)

and thus an approximate 95% confidence interval forTi would be

(Xit − 2× SEM, Xit + 2× SEM).

The SEM should not be confused with the SD of the test scores:

• σX = SD of test scores. Describes variation of test scores in the whole population.

• σX
√

1− rXX= SEM of the test. Describes variation of each test score around the correspond-
ing true score.

Figure 1 contrasts the distribution of observed scores in the population (solid line) vs. the
distribution of observed scores around measuring the same true score (dashed line). The larger
the reliability rXX, the smaller the spread of observed scores around the corresponding true score.
However, the spread of scores in the population never gets smaller thanσ2

T .
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1.4 Reliability and Statistical Methods

Reliability affects statistical tests, generally by making them less powerful. This generally means
you need a larger sample size to detect the same size effect with unreliable measures.

For example, suppose we want to compare the effect of an educational intervention in a treat-
ment group, vs. standard practice in a control group, on a cognitive test. The difference between
the mean test scores in each group will be significant if

X − Y
√

1
mS2 + 1

nS2
> cα

wherecα is the appropriate level-α cutoff for the t-test. Assuming for simplicity thatm = n and
inverting this expression we get that the sample sizen in each group should be at least

n ≥ 2
c2
αS

2

(X − Y)2

Now suppose that we expect to see a difference ofX − Y = 10 points in mean test scores between
the two groups. We know that

S2 ≈ E[S2] = σ2
X = σ

2
T/rXX

and so the sample size in each group should be, approximately

n ≥
c2
ασ

2
T

100rXX
. (5)

All other things being equal, the sample sizen needed for a significant result isinversely propor-
tional to rXX, so again it pays to makerXX as large as possible.

Reliability also attenuates (reduces) correlations between variables. Suppose

X = TX + EX

Y = TY + EY

}

(6)

and suppose theE’s are not correlated with each other or with theT’s. Then Cov (X,Y) = Cov (TX,TY),
so that

Corr (X,Y) =
Cov (X,Y)
σXσY

=
Cov (TX,TY)
σXσY

=
Corr (TX,TY)σTXσTY

σXσY
= Corr (TX,TY)

√
rXXrYY (7)

This says that
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• The maximum of Corr (X,Y) is the correlation of their true scores;

• How close we come to the maximum depends on how high the reliabilities of X andY are.

This phenomenon is sometimes called thecorrelation attenuationproblem because when we use
observed scores to compute correlations, they are attenuated toward zero relative to the correlation
we would have gotten by using the true scores. A similar phenomenon occurs with regression
analyses involving unreliable test scores.

1.5 The Effect of Test Length

The basic formula in Equation 2 says that

σ2
X = σ

2
T + σ

2
E.

and we knowrXX = σ
2
T/σ

2
X. Usually tests are composed of individual items, and we would like

to know what is the effect of lengthening or shortening the test. If we produce a newtestX(k) that
is k times as long asX, using items with independent errors and the same true scoreT, the new
variance decomposition will be

σ2
X(k) = σ

2
T + σ

2
E/k.

In that case the reliability of the new test will be

r (k)
XX =

σ2
T

σX(k)
=

σ2
T

σ2
T + σ

2
E/k
=

kσ2
T

kσ2
T + σ

2
E
=

krXX

krXX +
σ2
E
σ2

X

=
krXX

krXX + 1− rXX

=
k · rXX

1+ (k − 1) · rXX
(8)

Equation 8 is called the Spearman-Brown formula. It says forexample that a modestly reliable
test can be made dramatically more reliable by doubling its length. On the other hand, a test 10
times as longk = 10 yields much less than a 10-fold improvement in reliability. A graph ofr (k)

XX vs.
rXX is shown in Figure 2.

1.6 Estimating Reliability

Clearly it would be nice to have an estimate of test-retest reliability. There are several possibilities:

• Test-retest correlation. You can give the same test twice to the same group of students, and
compute the correlation between the two test scores. This will provide a plausible estimate
as long as no indivdidual differnces in (un-)learning takes place between test occasions.
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Figure 2: Effect of lengthing the test according to the Spearman-Brown formula. Initial reliability
is rXX = 0.55.

• Alternate forms correlation.If you have two different forms of the same test (say, you have
20 items and you put 10 on one test form and 10 on another test form), you can give both
forms to the same people and compute the correlation betweenthe two form scores. This
will also provide a plausivle estimate of reliability, though it will likely be lower than the
test-retest correlation. Also it depends strongly on the assumption that you were successful
at creating twoveryequivalent versions of the test, using different items.

• Split-Half correlation.After administering the test you have, split the items up into two
equal halves. The correlation between total scores on the two halves is a plausible estimate
of reliability. By itself this is probably a lower bound. Onepossibility to improve it is to apply
the Spearman-Brown formula (Equation 8) withk = 2, if one believes the two half-tests are
really equivalent and have independent error terms.

• Cronbach’s Alpha. A better estimate of split-half reliability would be to take all the possible
splits into equal halves, and average all of the split-half reliabilities. This turns out to be
equivalent to Cronbach’s (1951) Alpha coefficient:

αC =
n

n− 1

[

1−
∑n

i=1 Var (Xi)

σ2
X

]

=
n

n− 1

[
∑∑

i, j Cov (Xi ,X j)

σ2
X

]

(9)
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for a test ofn items,X1, . . . ,Xn. One can show thatα is a lower-bound onrXX under mild
conditions, (see Novick and Lewis, 1967, for these and otherdetails), and equalsrXX under
somewhat stronger conditions. With a little algebra, one can also show that

αC ≈
nr

1+ (n− 1)r

wherer = 1
n(n−1)

∑∑

i, j Corr (Xi ,X j) is the average inter-item correlation, which looks quite
similar to the Spearman-Brown formula (Equation 8).

Thus we see that aninternalmeasure of reliability, Cronbach’s alpha, can be used to estimate
an externalmeasure like test-retest correlation. There are many variations on the idea of
using internal consistency to estimate test-retest consistency. Some of the more famous ones
are Kuder & Richardson’s KR20 (a special case of Equation 9) and KR21 formulae, and
more general forms of Equation 9 due to Guttman.

Trochim (2005, 2006) discusses situations in which each of the above estimates is more or less
appropriate.

1.7 Other Reliability Issues

1.7.1 Other test reliabilities

There are many reliability or scalability coefficients that account for the particular kind of data one
is working with. For example if the items all have dichotomous responses (0 or 1, for incorrect and
correct, say) then Mokken (e.g. Mokken, 1997) has suggestedusing Loevinger’sH coefficient as
an index of reliability

H =

∑∑

i, j Cov (Xi ,X j)
∑∑

i, j Covmax(Xi ,X j)
(10)

where Covmax(Xi ,X j) is the maximum covariance betweenXi andX j that preserves the counts of
wrongs and rights for each item separately2. This is reminiscent of Cronbach’s alpha (Equation 9)
and some prefer to use it because alpha can greatly underestimaterXX if the items are dichotomous
and the probabilities of success vary greatly from item to item.

Lord (1980) and others have suggested that the basic reliability formula in Equation 3,

rXX =
σ2

T

σ2
X

=
Var (T)
Var (X)

,

2This turns out to be easy to compute, since it occurs when the items areGuttman items: Whenever the harder
question is answered correctly, the easier one is too.
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can be generalized beyond the latent variable model in Equation 1 by observing that, sinceX is
unbiased forT, E[X|T] = T. SubstitutingE[X|T] for T above we get

rXX =
Var (E[X|T])

Var (X)
,

which can be used for any latent variable model at all—even for models in whichE[X|T] , T.
This leads to a kind of adaptation of CTT to whatever model oneis dealing with, so that all of the
formulae above—e.g. those in Section 1.4—applyapproximatelyto the new model.

An alternative approach is to take the new latent variable model at face value and develop
methodology for hypothesis testing, correlations with other measures, etc. that are exact for that
model. This is an approach that has been advocated in more recent theoretical and applied psycho-
metric work, for example, see Mislevy (1991), Fox and Glas (2003), Mariano and Junker (2006),
and Schofield et al. (2006). However it is more cumbersome andusually requires collaboration
with a quantitative researcher familiar with both modern statistics and measurement.

1.7.2 Inter-rater reliability

A different problem that also goes by the name “reliability” is that of inter-rater reliability. We can
again build a model like Equation 1,

Rik = Ti + Eik (11)

where nowRik is the rating by thekth judge of thei th student’s response,Ti is the student’s true score
as before, andEik is rating error, again subject to unbiasedness and uninformativeness assumptions.
In this setting we are likely to be able to assign several raters to rate each person’s response and so
the variance components

σ2
R = σ

2
T + σ

2
E. (12)

are usually identifiable and estimable under various practical data collection designs. The resulting
reliability coefficient is called theintraclass correlation,

ICC =
σ2

T

σ2
R

=
σ2

T

σ2
T + σ

2
E
. (13)

The classic paper on this sort of inter-rater reliability isShrout & Fleiss (1979). They discuss
several designs and several estimators of the ICC. Mariano et al. (2006) reviews several recent
approaches that try to address inter-rater reliability in the context of more complex and realistic
latent variable models.

Other approaches involve looking at rater agreement. For example if a response can be rated in
two or more discrete categories we might look at theexact agreement

pagree=
#{times ratersk1 andk2 agree}

#{times ratersk1 andk2 rated together}
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or Cohen’s Kappa(e.g. Landis and Koch, 1977, discuss statistical properties of Kappa, as well as
interpretations similar to Table 1), which correctspagree for chance agreement:

κ =
pagree− pchance

1− pchance

wherepchance=
∑

ℓ P[ raterk1 rates in categoryℓ ]×P[ raterk1 rates in categoryℓ ], or even just the
usual product-moment correlation between the raters,rk1,k2. While all three of these measures are
recommended and/or criticised in various corners of the literature (e.g., Krippendorff and Fleiss,
1978), looking at them together is often useful in identifying raters that need more training, items
that are difficult to rate consistently, etc.

1.7.3 Generalizability theory

The basic idea of both Equation 2 and Equation 12 is to decompose the variance of an observed
score into a sum of variance components, one for true score and one for error.Generalizability
theory (GT)extends this decomposition in order to account for several different sources of error
together. For example, raters and items might be consideredtogether in a single GT model, so that
the effects of increasing the number of test items, as in Equation 8,and increasing the number of
raters per item (analogous to Equation 8) can be considered together. Other effects and interactions
can also be considered. The classic text is by Cronbach et al.(1972); a recent account from a major
methodologist in this area is Brennan (2001); and some recent attempts to embed GT ideas in other
psychometric models are presented by Patz et al. (2002).

GT models are formally equivalent to mixed-effects/variance components models, and can be
estimated by modern computational Bayes methods such as Markov Chain Monte Carlo (e.g.
Mao, Chin and Brennan, 2005), as well as by classical ANOVA and restricted maximum likeli-
hood (REML) methods (e.g. usingPROC VARCOMP or PROC MIXED in SAS,VARCOMP or repeated-
measures ANOVA in SPSS, orvarcomp or lme in R or Splus).

1.7.4 Item analysis

In addition to evaluating whole tests, it is necessary to construct the tests. For writing cognitive
items, Haladyna (1994) and Stiggins (1994) are basic resources. Once the items are written, we
need to determine whether they “hang together” as a test. Face validity should play a large role in
this process.

In addition several quantitative measures can be used to select items that contribute to high
reliability of the total test. This process is called “item analysis”, “scale construction”, or some-
times just “scaling”. Generally speaking we are looking foritems X j that depend on a single,
unidimensional3 latent variable, analogous toT Equation 1. We do this for two reasons: first, such

3Unidimensionalhas both a technical meaning and an intuitive meaning here. Technically, a unidimensional vari-
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items will generally increase the reliability of the test; and second, a test composed of unidimen-
sional items (those that depend on a unidimensional latent variable) are easier to describe and
interpret.

A drawback of this approach is that some important constructs are not unidimensional; for
such constructs this approach tends to make tests that are too narrowly focused to be fully valid.
For such cases, more complex quantitative methods are required. Fortunately, many constructs can
at least be broken down into unidimensional parts—for example, NAEP measures mathematics
achievement in five more-unidimensional areas, number properties and operations, measurement,
geometry, data analysis and probability, and algebra—so that a unidimensional test can be written
for each part.

Here I only mention four of the simplest methods for selecting a set of items that hang together
in a unidimensional scale.

• Inspect a table of means and variances for each item, to identify items that are too easy, too
hard, or not variable across examinees. Whether or not to keep these items will depend on
thepurpose of the test.

• Inspect a matrix of correlations (or percent agreements, orCohen’sκ’s, etc.) between all
pairs of items

– To find coding errors and fix them (e.g. all correlations should be positive)

– To find groups of items that correlate amongst themselves butnot with other items
(should these be removed to another subscale?)

• Compute thepoint biserial correlationof each item, that is, the correlation between that
item and the total test score. Or compute thedeleted point biserial correlation, which is the
correlation between that item and the total of theother items on the test. The point-biserial
correlation turns out to be equivalent to the test statisticfor a two-samplet-test comparing
total score for students who got the item “right” vs studentswho got it “wrong”, so thet-test
(onn−2 degrees of freedom, ifn students took the test) can be used to look for “significant”
point-biserials.

• Analogous to theH coefficeint in Equation 10, we can calculate an item-wiseH by summing
over just on index:

Hi =

∑

j Cov (Xi ,X j)
∑

j Covmax(Xi ,X j)

this can be used like the point-biserial to select items intoa scale. Sijtsma and Molenaar
(2002) discuss an item selection and statistical testing framework.

able is one whose values are numbers on the real line. Intuitively a unidimensional variable corresponds to a construct
that is easily and somewhat narrowly characterized, and that you could measure the “amount of” on an ordinal, interval
or ratio scale. For example, “Math proficiency” in general isprobably not unidimensional, but “proficiency in seventh
grade algebra” might well be.

12



References

Beaton, A.E., & Zwick, R. (1990).The effect of changes in the National Assessment: Disentan-
gling the NAEP 1985-86 reading anomaly.(No. 17-TR-21) Princeton, NJ: National Assess-
ment of Educational Progress/Educational Testing Service.

Brennan, R. L. (2001).Generalizability theory.New York: Springer-Verlag.

Borsboom, D. (2006). The attack of the psychometricians. Accepted,Psychometrika.

Camilli, G. and Shepard (1994).MMMS: Methods for identifying biased test items.Thousand
Oaks, CA: Sage.

Cronbach, LJ (1951). Coefficient alpha and the internal structure of tests.Psychometrika, 16,
297–334.

Cronbach, L. J., Gleser, G. C., Nanda, H., & Rajaratnam, N. (1972).The dependability of behav-
ioral measurements: Theory of generalizability for scoresand profiles.New York: Wiley

Fox, J. (1997).Applied regression analysis, linear models, and related methods.Thousand Oaks,
CA: Sage Publications.

Fox, J.P., and Glas, C.A.W. (2003). Bayesian modeling of measurement error in predictor vari-
ables.Psychometrika, 68,169–191.

Gulliksen, H. (1950).Theory of mental tests.New York: Wiley

Haladyna, T. M. (1994).Developing and validating multiple-choice test items.Hillsdale: Lawrence
Erlbaum.

Krippendorff, K. and Fleiss, J. L. (1978). Reliability of binary attribute data.Biometrics, 34,142–
144.

Kuang, D.C., and Steinberg, L. (2004).Assessing performance: Investigation of the influence of
item context using item response theory methods.Poster presented at the annual meeting of
the Society of Industrial and Organizational Psychology, Chicago, IL.

Landis, J. R. and Koch, G. G. (1977). The measurement of observer agreement for categorical
data.Biometrics, 33,159–174.

Lord, F. M. (1980).Applications of item response theory to practical testing problems.Hillsdale,
NJ: Erlbaum.

Lord, F. M. and Novick, M. R. (1968).Statistical theories of mental test scores.Reading, MA:
Addison-Wesley.

13



Mao, X., Shin, C. and Brennan, R.L. (2005).Estimating variability of estimated variance com-
ponents and related statistics using the MCMC procedure.Paper presented at the Annual
Meeting of the National Council on Measurement in Education, Montreal Canada.

Mariano, L. T. and Junker, B. W. (2006). Covariates of the rating process in hierarchical models
for multiple ratings of test items. Accepted,Journal of Educational and Behavioral Statis-
tics.

Messick, S. (1998). Test validity: A‘matter of consequence. Social Indicators Research, 45,35–
44.

Mislevy, R. J. (1991). Randomization-based inference about latent variables from complex sam-
ples.Psychometrika, 56,177–196.

Mislevy, R. J. (2003). Substance and structure in assessment arguments.Law, Probability and
Risk, 2,pp. 237–258. Available (March 2006) fromhttp://ssrn.com/abstract=805060

Mislevy, R. (2004). Can there be reliability without “reliability”? Journal of Educational and
Behavioral Statistics, 29,241–244.

Mislevy, R. J., Almond, R. G. and Lukas, J. F. (2003).A brief introduction to evidence-centered
design.Unpublished technical report. Available (March 2006) fromhttp://www.education
.umd.edu/EDMS/mislevy/papers/BriefIntroECD.pdf

Moss, P. A. (1994). Can there be validity without reliability?Educational Researcher, 23,5–12.

Mokken, R.J. (1997). Nonparametric models for dichotomousresponses. In: Hambleton, R.K. and
Van der Linden, W.J. (eds).Handbook of Modern Item Response Theory.New York-Berlin:
Springer-Verlag, pp. 351–367.

National Research Council (NRC). (2001).Knowing what students know : the science and design
of educational assessment. Committee on the Foundations of Assessment, Center for Educa-
tion, Division on Behavioral and Social Sciences and Education, National Research Council;
James Pellegrino, Naomi Chudowsky, and Robert Glaser, editors. Washington DC: National
Academy Press. Available (March 2006) fromhttp://www.nap.edu/catalog/10019.html.

Novick, M. R. (1966). The axioms and principal results of classical test theory.Journal of Math-
ematical Psychology, 3,1–18.

Novick, M. and Lewis, C. (1967). Coefficient alpha and the reliability of composite measures.
Psychometrika, 32,1–13.

14



Patz, R. J., Junker, B. W., Johnson, M. S. and Mariano, L. T. (2002). The hierarchical rater model
for rated test items and its application to large-scale educational assessment data.Journal of
Educational and Behavioral Statistics, 27,341–384.

Reckase, M. D. (1990).Unidimensional data from multidimensional tests and multidimensional
data from unidimensional tests.Paper presented at the Annual Meeting of the American
Educational Research Association, Boston MA.

Rothman, R., Slattery, J. B., Vranek, J. L. and Resnick, L. B.(2002).Benchmarking and alignment
of standards and testing.CSE Technical Report #566. Los Angeles CA: UCLA Center for
the Study of Evaluation, National Center for Research on Evaluation, Standards and Student
Testing (CRESST). Available (March 2006) fromhttp://cresst96.cse.ucla.edu/reports/TR566.pdf

Russell, M. and Plati, T. (2001). Effects of computer versus paper administration of a state-
mandated writing assessment.Teachers College Record.Available (March 2006) from
http://www.tcrecord.org, ID Number: 10709.

Schoenfeld, A. (2005). Method. To appear in F. Lester (Ed.),Second handbook of research on
mathematics teaching and learning.New York: MacMillan.

Schofield, L. S., Taylor, L., and Junker, B. W. (2006). The useof cognitive test scores in evaluating
black-white wage disparity. Submitted for publication.

Shrout, P.E., and Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability.
Psychological Bulletin, 86,420–428.

Sijtsma, K., and Molenaar, I. W. (2002).Introduction to nonparametric item response theory.
Thousand Oaks: Sage.

Sijtsma, J. and Verweij, A. (1999). Knowledge of solution strategies and IRT modeling of items
for transitive reasoning.Applied Psychological Measurement, 23,55–68.

Stiggins, R. (1994).Student-centered classroom assessment.New York: Macmillan College Pub-
lishing.

Thompson, B. (Ed.) (2003).Score reliability: Contemporary thinking on reliability issues.Thou-
sand Oaks: Sage.

Trochim, W. M. K. (2005).Research methods: the concise knowledge base.Cincinnati, OH:
Atomic Dog Press. Available (March 2006) fromhttp://www.atomicdog.com.

Trochim, W. M. K. (2006).The research methods knowledge base. Third Edition.Cincinnati,
OH: Atomic Dog Press. See alsohttp://www.socialresearchmethods.net/kb/ for
an earlier version.

15



Yu, C.-H. (2005).Reliability.Available (March 2006) fromhttp://seamonkey.ed.asu.edu/
˜alex/teaching/assessment/reliability.html.

16


