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Abstract

During the 2004–2005 school year, over 900 eighth-grade students used an online intelligent tutoring
system, the Assistment System of Heffernan, et al. (2001), to prepare for the mathematics portion of
the Massachusetts Comprehensive Assessment System (MCAS) end-of-year exam. A transfer model,
identifying the skills that each tutoring task and exam problem depends upon, was developed to help align
tutoring tasks with exam problems. We use a Bayesian form of item response theory (IRT) modeling to
attempt to model the difficulty of tutoring tasks and exam items additively in terms of these component
skills: the more skills, the more difficult the task or test item. Our goal is to directly examine the
alignment between tutoring tasks and assessment items and to use the transfer model to build more
efficient functions for predicting end-of-year exam performance from student activity with the online
tutor. However, our analysis shows that the additive skills model (the Linear Logistic Test Model, LLTM)
does not adequately account for task-to-task or item-to-item variation in difficulty.

Keywords: Cognitive modeling, Bayesian inference, intelligent tutoring systems, item response theory.

1 Introduction

The Assistment1 Project is a collaboration between the Computer Science Department at Worcester Poly-

technic Institute and several departments at Carnegie Mellon University. The overall goal of the project is to

build a reliable on-line tutor, referred to as the Assistment System, to prepare students for the Mathematics

portion of the Massachusetts Comprehensive Assessment System (MCAS) exam. The MCAS exam is part

of the accountability system that Massachusetts uses to evaluate schools and satisfy the requirements of the

2001 NCLB law2. In addition, we would like to be able to predict students’ performance on the MCAS exam

from their performance on the Assistment System and provide reliable feedback to teachers about student

knowledge.

Recently much work has been done by our colleagues in the Assistments Project to predict MCAS

scores, e.g. from monthly aggregates of dynamic tutoring metrics (Anozie & Junker, 2006), from a detailed

Bayes net specification of student skills (Pardos, Heffernan, Anderson & Heffernan, 2006), or from linear

growth curve models for student performance (Feng, Heffernan & Koedinger, 2006; Feng, Heffernan, Mani

& Heffernan, 2006). Although this work is very promising, it has been difficult to reduce the mean absolute

prediction error below about 10% of the total possible MCAS score, which is still somewhat high for reliable

and accurate prediction.
1The term “Assistment” was coined by Kenneth Koedinger and blends Assessment and Assisting.
2See more on http://www.doe.mass.edu/mcas.
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One possible impediment to further reducing prediction error is a lack of alignment between the way

skills contribute to task difficulty in the Assistment tutoring system, vs. how they contribute to item difficulty

in the MCAS exam. The work in this paper uses Item Response Theory (IRT; e.g. van der Linden &

Hambleton, 1997) to model task and test item difficulty additively in the skills required for the items: the

more skills required for each task or test item, the more difficult the item is expected to be. The additive

model we use, the Linear Logistic Test Model (LLTM; Fischer, 1974; van der Linden & Hambleton, Chapter

13), effectively constrains task difficulties according to a transfer model. This constrained model is compared

with a Rasch IRT model to see if the constraints implemented in the transfer model adequately model task-

to-task or item-to-item variation in difficulty (this is conceptually similar to computing R2 as the “proportion

of variance explained” in linear regression but there is no simple analogue to R2 in our setting). Additive-

difficulty models have been used successfully to model intelligent tutoring data in other settings (eg. Draney,

Pirolli & Wilson, 1995); such models should be distinguished, e.g., from conjunctive Bayes net models

(e.g. Pardos et al., 2006; or Junker & Sijtsma, 2001) which focus on student performance rather than task

difficulty.

The study and data on which this paper is based are described in Section 2. Section 3 gives more insight

into why we should assess the coding of skills to problems. In Section 4 we describe the statistical methods

used and summarize our results. We then present a random effects model in Section 5 in an attempt to find a

better fitting model. Finally, we compare skills in Assistment main questions and MCAS items in Section 6,

and offer some conclusions in Section 7.

2 The Study

2.1 Design

During the 2004–2005 school year, over 900 8th grade students in Massachusetts used the Assistment Sys-

tem. Eight teachers from two different middle schools participated, with students using the System for

20–40 minutes every two weeks. There were almost 400 main questions in the Assistment System which

were randomly given to students. The pool of main questions was restricted in various ways, for example by

the rate at which questions in different topic areas were developed for the tutor by the Assistments Project

team, and by teachers’ needs to restrict the pool to topics aligned with current instruction. Thus, coverage

of topics was not uniform, and students might see the same Assistment tasks more than once.

2.2 Data

Students using the Assistment System are presented with problems that are either previously released MCAS

exam items or that are prima facie equivalent “morphs” of released MCAS exam items; these are called
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“main questions”. If students correctly answer a main question, they move onto another main question. If

students incorrectly answer the main question, they are required to complete scaffolding questions which

break the problem down into simpler steps. Students may make only one attempt on the main question each

time that it is presented, but may take as many attempts as needed for each of the scaffolds. Students may

also ask for hints if they get stuck in answering a question.

The analysis in this paper includes only those students which have MCAS exam scores recorded in the

database. This narrows the sample size to a total of 683 students. Previously Farooque & Junker (2005)

found evidence that skills behave differently in Assistment main questions and scaffolds. Since we want to

make comparisons to the MCAS exam, the only Assistment data that is utilized in this paper is performance

(correct/incorrect) on Assistment main questions. There are a total of 354 different main questions seen

by the above students. Also analyzed in this paper is performance on the 39 Spring 2005 MCAS exam

questions for the 683 students whose Assistment performance was used.

To model and predict difficulty of items, we need a measure of what skills items do and do not contain.

We can break the problems down into individual mathematics skills and record the dependencies between

problems and skills. The skill indications can be assembled into a transfer model. The transfer model, also

referred to as a Q-matrix (Embretson, 1984; cf. Barnes 2002 for a recent, more-elaborate application in

intelligent tutoring) or skill coding, is a matrix

Q =
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where q j,k = 1 if problem j contains skill k and 0 if it does not. Thus, the transfer model simply indicates

which skills each problem contains.

Currently attention is focused on a single transfer model known as the WPI-April-2005 transfer model.

In the remainder of this paper, unless otherwise noted, any reference to a transfer model refers to this

particular model. The current version of this model contains a total of 106 skills, 77 of which appear on

the Assistment main questions included in this analysis and 40 of which appear on the Spring 2005 MCAS

exam. Neither of these skill sets is a subset of the other.

3 Research Question - Transfer Model Assessment

Our goal is to use the transfer model to directly examine the alignment between tutoring tasks and assessment

items, with an eye toward building more efficient functions for predicting end-of-year exam performance

from student activity with the online tutor. If skills function differently for Assistment main questions and

MCAS test items, then additional adjustments will need to be made to improve functions predicting MCAS

performance from student activity with the tutor. Since performance on any particular test item depends on
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both student proficiency and item difficulty, we use a member of the family of IRT models, the LLTM, to

factor out student proficiency and directly model item difficulty as a function of skills required for the item.

4 Assessment of the WPI-April-2005 Transfer Model

MCAS multiple choice questions are scaled3 using the 3-Parameter Logistic (3PL) model and short answer

questions are scaled using the 2-Parameter Logistic (2PL) model from IRT (van der Linden & Hambleton,

1997). We know that Assistment Items are built to parallel MCAS items and so it would be reasonable to

model Assistment Items using the same IRT models. However, for simplicity, the Rasch model,

P j(θi) = P(Xi, j = 1|β j, θi) =
1

1 + e−(θi−β j)
, (1)

also called the 1-Parameter Logistic (1PL) model, was used to begin analysis. In Equation 1, θ i represents

the ability of student i and β j represents the difficulty of problem j. Higher values of θ correspond to

higher student abilities and higher values of β correspond to harder problems. There is evidence that student

abilities and problem difficulties have similar estimates under the 3PL and the Rasch model (Wright, 1995)

and so we are not losing much information by starting with the Rasch model. The Rasch model was then

extended to the Linear Logistic Test Model (LLTM) which incorporates the transfer model and takes skills

into account (Fischer, 1974). In the LLTM, it is assumed that skill requirements for each question combine

additively to influence Rasch model question difficulty,

β j =

K
∑

k=1

q j,kαk. (2)

Here K is the total number of skills in the transfer model being used and the q j,k are the entries of that transfer

model. Thus, β j is now a linear combination of the skills that appear in problem j. Here αk represents the

difficulty of skill k. Similar to problem difficulties, higher values of α indicate harder skills.

For both the Assistment and MCAS exam dataset, we have discrete observations {X i, j : i = 1, 2, ..N, j =

1, 2, ..J}. In the Assistment dataset there are N = 683 students and JA = 354 questions. The Assistment

dataset contains many missing values since no student saw all of the problems. However, these values can be

thought of as missing at random and it is not necessary to worry about them in analysis. We have assumed

that students are independent of one another and that individual student responses are independent given the

student’s ability and the problem’s difficulty. The model can then be simplified to a Bernoulli trial for each

observation,

Xi, j ∼ Bern(P j(θi)) (3)
3More information at http://www.doe.mass.edu/mcas/2005/news/03techrpt.pdf.
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where P j(θi) is given above by the Rasch (or LLTM) model above. The complete data likelihood can then

be written as

P(X = x) =
N
∏

i=1

∏

j:i saw j

P j(θi)xi, j [1 − P j(θi)]1−xi, j . (4)

The same N = 683 students are used for analysis of the JM = 39 items from the Spring 2005 MCAS

exam. While missing values were possible if students ran out of time or skipped questions, for these students

the dataset is complete. Since we are making the same assumptions about the data, the same data likelihood

can be applied to this MCAS dataset.

Before continuing it is worth reiterating that we are predicting, given a student’s ability and a problem’s

difficulty, the probability that student i will answer question j correctly. This paper focuses on the β j values

to compare how the Rasch model and LLTM characterize the problems. Ideally, the two models would give

similar item difficulties to problems.

To check the fit of the data and transfer model to the IRT models the per problem standardized residuals,

r j =
n j − E(n j)
√

ˆvar(n j)
, (5)

were analyzed. The estimated number of correct answers, E(n j), was subtracted from the observed number

of students who got the question correct, n j, and the difference was divided by the predicted standard devia-

tion of the number of correct answers. These residuals are actually based on outfit statistics (van der Linden

& Hambleton, 1997, Chapter 6), which are based solely on the difference between observed and expected

scores.

4.1 Results

We estimated the θi and β j values in the Rasch model and the θi, β j, and αk values in the LLTM, using

Markov Chain Monte Carlo methods with the program BUGS (Bayesian Inference Using Gibbs Sampling;

Spiegelhalter, Thomas, and Best, 1996). The Rasch model, Equations 1 and 4, was first run on the Assist-

ment data with the priors θi ∼ N(µθ, σ2
θ
) and β j ∼ N(µβ, σ2

β
). The hyperpriors on µθ and µβ were both

Normal(0,1E-6) and the hyperpriors on σ2
θ

and σ2
β

were both Inverse-Gamma(1,1). The posterior estimate

of µθ was 0.69 and σ2
θ

was 0.758 These values were then used as the prior mean and variance of θ in all sub-

sequent simulations as a way of equating. In the LLTM, which constrains the Rasch model by Equation 2,

the prior on α was Normal(µα, σ2
α). The hyperpriors were again Normal(0,1E-6) on the mean and Inverse-

Gamma(1,1) on the variance. The same techniques and models were used to obtain posterior estimates for

the MCAS dataset.

To determine which problems and skills had non-zero difficulty estimates, equal-tailed posterior 95%

credible intervals were used. This was an important check since problems (or skills) with difficulties es-

timated to be zero are considered middle level and we do not gain much information from these. These
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Figure 1: Assistment and Spring 2005 MCAS Residuals and Posterior β and θ Estimates

intervals indicated that for the Assistment dataset 64 of the 77 (83.1%) skill parameters in the LLTM model

were non-zero. For the 354 problem difficulties, the LLTM gave 334 non-zero estimates and the Rasch

model gave 264 non-zero estimates. These results are an indication of a difference between the Rasch model

and the LLTM estimates of problem difficulty. In fact, only 175 (of the 354) of the intervals overlap. The

other 179 posterior estimates of problem difficulty are significantly different. Thus, for the Assistment data,

the constraints of the LLTM are not adequately modeling problem difficulty. For the MCAS data, the LLTM

results showed that 20 of the 40 skill parameters were non-zero. In the LLTM 26 of the 39 problem dif-

ficulties were non-zero and in the Rasch model 23 of the 39 were non-zero. There was more similarity in

posterior estimates as 36 (of the 39) posterior intervals for problem difficulty overlapped.

Figures 1 (a) and (d) show the LLTM versus Rasch residuals, as described in Equation 5. The Rasch

model residuals are on the horizontal axis and the LLTM residuals are on the vertical axis. In both cases we

see that the Rasch residuals are behaving well, but that the LLTM residuals are much larger than expected.

Since these residuals are standardized, we expect them to fall between −2 and 2. This is more evidence that

the LLTM is not as adequate as the Rasch model. For the Assistment dataset, the difference in BIC scores

between the models is ∼ 3100 and thus overwhelmingly favors the Rasch model. When using the MCAS

dataset, the difference is ∼ 144 and again the Rasch model is favored. The estimated student abilities are

shown in Figure 1 (c) and (f). In the Assistment dataset the LLTM estimates higher student abilities than the

Rasch model. However, in the MCAS dataset the Rasch and LLTM give practically identical estimates.
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a b variance of β Significant α′ s

1 1 2.2660 19

3 3 2.3381 5

10 5 2.2089 5

20 20 2.1584 4

50 50 1.9290 6

100 100 1.6955 10

Table 1: Estimated Posterior Variance of Problem Difficulties and Number of Significant Skill Difficulties

for Various Priors in the Random Effects Model

The posterior estimates for of the problem difficulties can be seen in Figures 1 (b) and (e). Rasch

model estimates of problem difficulty are on the horizontal axis and LLTM estimates are on the vertical

axis. Estimates are color-coded by the number of skills in the problem: blue-1 skill, green-2 skills, yellow-3

skills, and red-4 skills. In general, the problem difficulty increases as the number of skills increases. For

the Assistment data the Rasch problem difficulties have less variation than the LLTM problem difficulties.

In the plot (b) we see several horizontal lines of dots. These lines indicate problems with the same skill(s)

that have the same difficulty estimate from the LLTM, but different Rasch model estimates. This is an effect

of the LLTM since we have forced problems with the same skill(s) to have the same difficulty. The same

phenomenon occurs within the MCAS dataset but it is not as noticeable since there are only 39 problems.

5 Adding a Random Effect Component

As discussed briefly in Section 4 Figure 1(b) shows horizontal lines. However, there is no reason to believe

that every problem with the same set of skill(s) should have the exact same difficulty. One way of modifying

this assumption is to add a random effects component, similar to Janssen & De Boeck (2006), to each

problem difficulty in the LLTM. The model now states that

µ j =

K
∑

k=1

q j,kαk (6)

and

β j ∼ N(µ j, σ
2
β). (7)

The prior distribution of σ2
β

is Inverse-Gamma(a,b) like the previous prior distribution of the variance term

of the problem difficulties in the Rasch model. Several different values of a and b have been tried, but in

each case the estimated error term is large and overtakes the skill estimates. A much lower percentage of

the skill difficulties are significant in these models. In the previous work on Assistment main questions, the

estimated posterior variance of the problem difficulties was 1.1080. As can be seen in Table 1, for each of
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Figure 2: Credible Intervals for the 29 Skills Appearing in both Assistment main questions and the Spring

2005 MCAS Exam.

the prior distributions the posterior estimate of the variance of problem difficulties is much higher. Thus, for

our dataset, adding a random effect component does not improve our predictions of problem difficulty.

6 Assessing the Alignment of Skill Difficulty

Although the LLTM gives a poor fit for both the Assistment main questions and the MCAS exam, the skill

difficulty estimates from each dataset were compared in search of differences and similarities. There are a

total of 29 skills that appear in both the Assistment main questions analyzed and the Spring 2005 MCAS

exam. Figure 2 shows the 95% posterior credible intervals for these 29 skills. The intervals in green (with

the dots on the skills axis) overlap and the ones in red do not. There are only 13 skills where the intervals

overlap. This means that for the other 16 skills, the two models estimated significantly different difficulties.

This is a discouraging sign, although it must be taken lightly since we have admitted the neither model is

fitting well. Once an adequate skills model is found, an in-depth assessment of any differences in estimated

skill difficulties will be informative.
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7 Initial Conclusions and Future Plan

An additive skills model for question difficulty, such as the LLTM, does not accurately reflect the range

of difficulties of questions, on either Assistment main questions or MCAS test items. For both Assistment

main questions and Spring 2005 MCAS exam items, the unrestricted Rasch model has a much better fit than

the LLTM. There are at least two possible reasons for this. The first is that the WPI-April-2005 transfer

model is not complete: there might be missing skills or the problems may not be correctly coded with skills

(for example, there is anecdotal evidence from working with the Assistment System in the classroom, that

non-mathematical skills may play a role in question difficulty). Another reason is that this may not be the

correct IRT model to use when taking skill knowledge into account. The LLTM model assumes that skills

contribute to question difficulty additively. The evidence from this analysis is that an additive skills model

for MCAS item test difficulty does not work well. We will explore other IRT models (e.g., conjunctive skills

models) for item difficulty and student proficiency in the future.

7.1 Predicting MCAS Exam Scores

As mentioned earlier, significant effort is already underway to generate accurate predictions of MCAS scores

from Assistment tutoring data (Anozie & Junker, 2006; Feng et al., 2006; Feng et al. 2006; Pardos et al.,

2006; etc.). This paper is a first attempt to build an accurate psychometric model for the tutoring and exam

data, in order to improve an apparent lower bound on mean absolute prediction error. Although the LLTM

was not a successful model here, we continue to search for a well-fitting psychometric model. Once found,

estimated student proficiency from this model can be combined with other Assistment performance metrics

to produce an effective prediction function, in an approach that is similar to that of Schofield, Taylor, &

Junker (2005).
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