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Abstract

We present methodology for developing functions that predict student scores on end of year state
accountability exams from dynamic testing metrics developed from intelligent tutoring system log data.
Our results confirm the findings of Heffernan et al. (2006) that online tutoring log based metrics pro-
vide better predictions than using paper and pencil benchmark tests. Our approach provides a family
of prediction functions to be used throughout the year, in order to provide timely and valid feedback to
teachers and schools about student progress. Since the same dynamic testing metrics are used in all pre-
diction functions in the family, we can also begin to understand the changing influence of these metrics
on prediction over time.

Keywords: Cognitive modeling, intelligent tutoring systems, data mining and machine learning

1 Introduction

Recently there has been intense interest in using periodic benchmark tests to predict student performance on

end-of-year accountability assessments (Olson, 2005). Benchmark tests are typically paper-and-pencil tests

given at regular intervals, from three times a year to monthly, in order to predict progress toward proficiency

on state accountability exams. Some benchmark tests also try to function as formative assessments for

teachers, so that the classroom time occupied by the benchmark test is not completely lost to teachers’

instructional mission. Nevertheless, teachers may still find the time needed for benchmark tests to be an

intrusion on instructional time.

An alternative approach may be available when an online, computer-based tutoring system is in place.

The benefits of online tutoring systems are well known: Koedinger et al. (2000) study classroom evaluations

of the Cognitive Tutor Algebra course (e.g., Koedinger, Anderson, Hadley, & Mark, 1997; Koedinger,

Corbett, Ritter, & Shapiro, 2000) and demonstrate that students in tutor classes outperform students in

control classes by 50–100% on targeted real-world problem-solving skills and by 10–25% on standardized

tests. Beck et al. (2003) argue for a mixed predictive/formative use for benchmarks based on tutor interaction

logs for their online reading tutor. In this paper we will explore Beck’s suggested approach with a different

tutoring system.
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Heffernan et al. (2001) have developed an online tutoring system for eigth grade mathematics that is

explicitly aligned to state exam standards, and in fact takes released state exam questions and “morphs”

of them as the main student tasks for tutoring. Their system is called the ASSISTment system, since it

implicitly assesses progress toward proficiency on the state exam at the same time it assists student learning

in mathematics.

In this paper we design effective linear regression prediction models for end of year performance from

tutoring system data using cross-validation based variable selection. In order to provide predictions regularly

throughout the year, we build separate prediction models for each month of the school year, based on current

and previous months’ summaries of student activity. In order to preserve comparability and interpretability

across months, we constrain the model building so that the same variables are used in each prediction model.

In Section 2 we describe our model building approach in more detail, and in Section 3 we describe in detail

the data we used in this work. Section 4 presents the results of our analyses and considers the changing

influence of dynamic testing metrics on prediction over time, and in Section 5 we explore the possibilities

of using our models for online test score prediction, as well as possible extensions to our methodology.

Our work builds on and greatly extends analyses of Lee & Ting (2005), based on an earlier 6–8 week

pilot of the ASSISTment system. It is also closely related to the work of our colleagues Feng, Heffernan

& Koedinger (in press; 2006) to find a single regression model to predict state exam scores from a full-

year summary of ASSISTment data. Recently Pardos, Heffernan, Anderson & Heffernan (2006) and Feng,

Heffernan, Mani & Heffernan (2006) have examined per-skill and per-item performance metrics (rather than

the aggregated metrics we consider here) to help refine prediction of end-of-year performance. Our work

is aimed at cases where fine-grained per-skill and per-item metrics may not be readily available; it also

allows an examination of the changing influence of dynamic assessment metrics over time on end-of-year

performance predictions.

2 Modeling

2.1 ASSISTment dynamic testing metrics

Eighth graders from two schools in the Worcester Public School District used the ASSISTment system in

the September thru July 2004-2005 school year. Four hundred “main questions” or main items were avail-

able for students to practice with. These main items were mostly previous Massachusetts Comprehensive

Assessment System (MCAS) 1 exam questions and prima facie equivalent versions (or “morphs”) of them.

Each main item was supplemented with a set of “scaffold questions” intended to help students who did not

get the main item right on the first try. An ASSISTment is one main item together with its available “scaffold

questions”. In October students spent on average 27 minutes in the system and answered approximately 11

main questions and 21 scaffold questions.

Thus not only can the system keep track of right and wrong answers on first attempts at MCAS questions,

it can also differentiate between students who need more or less help to get the right answers: students who

ask for more hints, who take longer before answering a question, etc., may be distinguished from students
1http://www.doe.mass.edu/mcas
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Summary Per Month Definition Average Value October

(Most Used Month)

NumAllMain Number of complete main questions 11.26
NumAllScaff Number of complete scaffolds 20.77

NumCorMain Number of correct main questions 4.26

NumHintsAll Number of hints on main questions and scaffolds 25.54
NumAttAll Number of attempts 48.59

NumSecAll Number of seconds on main questions and scaffolds 1613.00

AttCorMain Number of a attempts on correct main questions 4.25

AttIncMain Number of attempts on incorrect main questions. 8.63
AttCorScaf Number of attempts on correct scaffolds 8.23

AttIncScaf Number of attempts on incorrect scaffolds 27.48

SecCorMain Number of seconds on correct main questions 181.40

SecIncMain Number of seconds on incorrect main questions. 466.00
SecCorScaf Number of seconds on correct scaffolds 181.00

SecIncScaf Number of seconds on incorrect scaffolds 784.20

NumCorScaf Number of correct scaffolds 8.42

MedSecAllMain Median number of seconds on main questions 56.90
MedSecIncMain Median number of seconds on incorrect main questions 65.11

PctSecIncMain percent of time on main questions spent on incorrect main questions 0.78

PctCorScaf percent of scaffolds correct 0.41

PctCorMain Percent of main questions correct 0.28
NumPmAllScaf Number of complete scaffolds per minute 1.36

NumPmAllMain Number of complete main questions per minute 1.13

NumIncMain Number of incorrect main questions 7.00

NumIncScaf Number of incorrect scaffolds 12.35
PctSecIncScaf Percent of time on scaffolds spent on incorrect scaffolds 0.79

NumHintsIncMain Hints plus incorrect main questions 32.54

NumHintsIncMainPerMain Hints plus incorrect main question per ASSISTment 3.46

Table 1: Variables in bold face passed our Stage 1 collinearity check, and were considered for Stage 2

variable selection. Italicized variables were also considered in Stage 2, because of their strong substantive

interpretation; they did not substantially increase collinearity when added to the variable pool for Stage 2.

who ask for few hints or need only a brief time to answer. These dynamic testing metrics (cf. Campione, et

al., 1985) can be very predictive of student achievement. The dynamic testing metrics we considered were

constructed by examining the earlier work of Lee & Ting (2005) and Feng, Heffernan & Koedinger (2006;

in press), and considering additional variables that may be helpful in predicting MCAS scores (see Table 1).

In our approach we first construct monthly summaries of these variables, for each month of the ASSIST-

ment field trial of 2004–2005. For each month, we build a linear model predicting MCAS scores from that

month’s summaries as well as any previous month’s summaries. Variable selection for the models proceeds

in two stages, first eliminating variables that are highly redundant with other variables in Table 1, and then

selecting a final set of variables by minimizing cross-validation prediction error (Wasserman, 2004, pp. 218,

364). The final set of monthly prediction models are constrained to use the same set of variables, in order to

facilitate comparison of the models across months.

2.2 Model building

2.2.1 Stage 1

In Stage 1 our goal is to eliminate variables that are highly correlated with other variables in Table 1.

Separately for each month, we begin with the full set of monthly summaries and calculate variance inflation

factors (VIF; see Hamilton, 1992, pp. 133, 135) for each variable. The variable with the highest VIF

is eliminated, and VIF’s are recalculated. This backwards-selection procedure is iterated until all VIF’s are
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less than 10 (this is equivalent to multiple-R2
< 0.90 for predicting each remaining variable from the others).

For a variable to be considered in Stage 2, it must be retained in all trial months.

2.2.2 Stage 2

In Stage 2 we peform cross-validation-assisted forward selection where we evaluate prediction error by 10-

fold cross validation (Wasserman, 2004, pp. 220, 363; see also Snee, 1977), using the sum over all models of

the mean absolute deviation (MAD). This forward selection procedure is not like standard forward selection

in two ways. First, we are evaluating variables for inclusion in multiple regression models simultaneously:

each variable is either included in all models or it is excluded from all models. Second, each variable actually

comes in multiple versions, since there is a summary of that variable for each of the trial months, and all

current and past monthly summaries are considered in each model.

3 Data: the 2004-2005 ASSISTment tutor trial

Of the 912 students that worked with the ASSISTment system at some time during the trial year, only 105

students had complete data in each of the seven months October through April.

We imputed students’ monthly summaries for months in which they did not use the ASSISTment system

by copying forward their summaries from the most recent month in which they did use the system. Hence

students considered must have worked with the ASSISTment system in September and/or October 2004.

We think this imputation is a reasonable reflection of student performance because it was rare to go back

more than two months to retrieve data for imputation: in March where the most number of imputations

were made, 868 of the 912 students used the ASSISTment system. 50% of these March students needed no

imputation, 23% needed pulling forward from February, and 14% needed pulling forward from January, etc.

After imputation 697 students of the total 912 students had complete data. 560 of these 697 students

had usable data for the variable selection procedure we described above (they had MCAS scores and never

had a completion time of zero seconds on any main question or scaffold that they answered). 15 of these

560 students had perfect main question scores and so required additional, logical, imputation for percent

correct on scaffolds (100%), time spent on incorrectly answered scaffolds (zero seconds), etc. 362 of these

560 students had complete pre- and post-tests, as described by Feng et al. (2006), and some of our analysis

focus on this subset.

4 Results

4.1 Stage 1.

After running the Stage 1 backwards elimination procedure, 11 variables remained in the pool. These

variables are listed in bold in Table 1. The choices made by this procedure generally make sense; for

example among variables measuring quantity of questions completed, rate of question completion, and time

spent on questions, at least one of these was eliminated.
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Nevertheless two variables that we felt might have an important interpretive contribution were also

eliminated from the variable pool: Percent correct on main questions (PctCorMain), and Number of hints

requested plus number of incorrect main questions (NumHintsIncMain) These two variables were added

back into the variable pool and VIF’s were recomputed. They are listed in italics in Table 1 After their

re-introduction, none of the eleven previously selected variables had a max VIF larger than 10. Thus, all 13

bold-faced and italicized variables in Table 1 were available for analysis in Stage 2.

4.2 Stage 2.

Our main analysis was conducted on the full set of 560 students described in the data and subjects section,

and the 13 bold-faced and italicized variables listed in Table 1. Variables were added one-at-a-time, accord-

ing to maximum reduction in cross-validation MAD summed over all seven linear prediction models; when

no further variable additions reduced the MAD, the procedure ended.
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Figure 1: Average order of variable selection in stage 2. The number in parenthesis indicates the number of

trials the variable was selected. Each average order score is calculated by averaging the order of inclusion

in each of the indicated number of trials. An order of 1 indicates the variable is entered first on average, a 2

indicates if the variable is entered second on average.

Figure 1 shows this cross-validation based variable selection procedure, averaged over 100 cross-validation

runs. On each run random splits of the data were made. Variables from Table 1 are listed across the bottom

of the graph; the number in parentheses following each variable is the number of runs (out of 100) for which

the variable was selected into the regression models. The solid line graphed in Figure 1 shows the average

order of selection of each variable, across the runs for which it was selected: an average order of one indi-

cates that the given ASSISTment metric, on average, was selected first into all seven models; two indicates

that the given ASSISTment metric, on average, was selected second into all seven. Approximate Wald-style

95% confidence intervals for order of selection are also shown.
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Figure 1 shows that percent correct variables: PctCorMain and Percent correct on scaffold questions

(PctCorScaf), and a time efficiency variable: number of seconds spent on incorrectly answered scaffolds

(SecIncScaf) appeared as the first, second and third variable entered in each of the 100 cross-validation

runs. A second time efficiency variable number of scaffolds completed per minute (NumPmAllScaff) and

a help seeking variable number of hints and incorrect main questions per number of main questions were

entered fourth and fifth in about 78 of the 100 cross-validation runs.
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Figure 2: Average MAD score produced per model. Each point is calculated by averaging over 100 cross-

validation experiments. The order of variable entry is indicated on the horizontal axis and was determined

from the first 100 run cross-validation experiment. See Figure 1

In Figure 2 we show the results of a second cross-validation experiment designed to explore how predic-

tions of the MCAS exam improve as more data is accumulated. In this experiment, variables were added to

each of the seven regression models one at a time, in the order indicated in Figure 1. 10-fold cross-validation

MAD’s were calculated after each variable was added. This procedure was also repeated 100 times, and the

resulting MAD’s were averaged.

In Figure 2, the top most line represents the October model. The first point on this line represents

the average 10-fold cross-validation MAD, averaged over 100 cross-validation replications, for a model

containing only the October summary of PctCorMain. The second point on the same line represents the

average MAD, for a model containing only October summaries PctCorMain and PctCorScaf, and so forth:

as more variables are added, the MAD goes down. On the other hand, the first point on the second line

in Figure 2 represents the average MAD for a model containing October and November summaries of the

PctCorMain variable etc.

For our final prediction models we included all variables until the last variable for which the April

model’s average MAD score decreased. Thus, we consider all variables added before and including this

cutoff, they are: percents correct on main items and on scaffold items, rates of completion for scaffold items,
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Model R2 adjusted MAD % Error (MAD/54)*100

Pretest 0.523 6.690 12.388

Pre-test and Post-test 0.557 6.440 11.925

October 0.368 7.737 14.328

Oct thru November 0.474 7.069 13.090

Oct thru December 0.527 6.585 12.195

Oct thru January 0.568 6.151 11.392

Oct thru February 0.578 6.013 11.135

Oct thru march 0.577 5.978 11.070

Oct thru April 0.637 5.462 10.115

Table 2: R2 adjusted, and (MAD) for 362 students who have pre and post paper tests. Stage 2 models using

top five variables are shown below Pre-test and Post-test. These variables are: PctCorMain, PctCorScaf,

SecIncScaf, NumPmAllScaf, and NumHintsIncMainPerMain

time spent on incorrectly answered scaffold items and number of hints plus incorrect main questions per

main question.

4.3 Comparison with Bench mark tests

Here we compare prediction of MCAS scores using the variables chosen in our variable selection procedure,

with prediction using only the paper and pencil pre- and post-tests described in Feng et al. (2006), for the

subset of 362 of the full set of 560 students who also have these paper and pencil test scores. For this analysis

we did not use cross validation to calculate mean absolute deviations; instead we calculated training-sample

MAD’s by producing model fits determined by the subset of 362 students and appropriate ASSISTment

metrics or paper test variables. Residuals without cross validation should be lower than residuals using

cross validation, because with cross validation we are not using each students data in each model fit.

Table 2 shows that predictions of the MCAS exam get better as we accumulate data, that is, we see

that R2 adjusted increases and MAD’s decrease with additional ASSISTment metric monthly summaries. In

addition we see that three months of ASSISTment data (October through December) produce models with

better R2 adjusted and MAD than the pretest only model; and four months’ data exceeded the predictive

power of the pre-test and post-test together.

4.4 Coefficients

Table 3 gives coefficients of dynamic testing metrics for the seven linear models. We see how the influence

of various online system metrics on MCAS score prediction change over time. As would be expected,

percent correct on main questions and scaffold questions contribute positively to predict MCAS score, each

time their coefficients are significantly different from zero in these models. In addition, number of scaffolds

completed per minute and number of hints and incorrect main questions per number of main questions also

contribute positively to MCAS score prediction: Thus, a higher rate of completion of scaffold questions
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Model PctCorMain PctCorScaf SecIncScaf NumPmAllScaf NumHintsInc Intercept

*1000 -MainPerMain

Coef Se Coef Se Coef Se Coef Se Coef Se Coef Se

Oct 14.66 2.63 19.37 2.59 -1.22 0.74 1.34 0.54 -0.13 0.28 14.01 14.66

Oct 5.58 2.73 11.92 2.70 -2.07 0.72 0.63 0.55 -0.03 0.28 12.35 5.58
Nov 11.32 2.68 12.05 2.45 -1.04 0.52 0.55 0.42 0.03 0.28 12.35 5.58

Oct 2.44 2.69 8.67 2.65 -2.09 0.70 0.52 0.54 -0.07 0.27 4.71 2.44

Nov 6.33 2.72 7.89 2.50 -1.66 0.58 0.17 0.44 -0.18 0.30 4.71 2.44

Dec 11.47 2.66 12.36 2.37 1.09 0.61 1.41 0.55 0.88 0.34 4.71 2.44

Oct 1.87 2.56 6.50 2.54 -1.77 0.67 0.47 0.52 -0.09 0.26 0.44 1.87
Nov 5.23 2.60 7.39 2.38 -1.63 0.56 0.08 0.42 -0.19 0.29 0.44 1.87

Dec 4.51 2.71 6.71 2.47 1.00 0.60 1.33 0.55 0.44 0.35 0.44 1.87

Jan 16.03 2.54 8.81 2.12 0.01 0.59 0.22 0.44 0.99 0.35 0.44 1.87

Oct 2.22 2.57 6.14 2.54 -1.69 0.67 0.50 0.52 -0.06 0.26 -1.92 2.22

Nov 4.66 2.60 7.09 2.38 -1.40 0.58 0.19 0.43 -0.21 0.29 -1.92 2.22
Dec 4.54 2.69 6.09 2.46 1.05 0.60 1.24 0.55 0.43 0.35 -1.92 2.22

Jan 13.49 2.69 8.50 2.27 -0.09 0.64 -0.18 0.48 0.89 0.38 -1.92 2.22

Feb 6.41 2.46 1.41 2.03 -0.59 0.81 0.85 0.42 0.30 0.32 -1.92 2.22

Oct 1.88 2.56 6.15 2.53 -1.74 0.66 0.59 0.52 -0.04 0.26 -3.15 1.88

Nov 4.18 2.59 6.03 2.38 -1.32 0.59 0.31 0.43 -0.26 0.29 -3.15 1.88
Dec 4.43 2.68 6.39 2.47 1.03 0.59 1.00 0.55 0.41 0.35 -3.15 1.88

Jan 12.21 2.72 7.70 2.30 0.15 0.65 -0.21 0.48 0.84 0.38 -3.15 1.88

Feb 3.29 2.66 -0.09 2.27 -0.57 0.88 0.58 0.50 0.21 0.36 -3.15 1.88

March 7.60 2.70 2.94 2.43 -0.30 0.69 0.59 0.49 0.32 0.28 -3.15 1.88

Oct 1.76 2.43 3.98 2.42 -1.87 0.63 0.62 0.49 0.06 0.25 -4.72 1.76
Nov 3.65 2.45 5.27 2.25 -0.88 0.56 0.08 0.41 -0.23 0.28 -4.72 1.76
Dec 5.33 2.54 6.72 2.35 0.89 0.57 1.02 0.52 0.56 0.34 -4.72 1.76
Jan 7.31 2.66 5.71 2.20 -0.02 0.63 -0.09 0.46 0.39 0.37 -4.72 1.76
Feb 2.00 2.53 0.51 2.16 -0.80 0.84 0.43 0.48 0.27 0.35 -4.72 1.76
March 6.62 2.65 1.18 2.40 -0.23 0.66 0.21 0.48 0.48 0.29 -4.72 1.76
April 7.83 1.95 6.32 1.70 0.96 0.80 1.41 0.47 -0.15 0.19 -4.72 1.76

Table 3: Coefficients of dynamic testing metrics for the seven linear models. Coefficients significantly
different from zero at the α = 0.05 level are in bold.

seems to be evidence of proficiency, rather than cheating or some other gaming behavior. On the other hand,

number of seconds spent on incorrectly answered scaffold questions contributes negatively in all but one of

the cases in which its coefficients are significantly different from zero. Both the ASSISTment system, and

teachers themselves, may wish to devote more attention to students who are going slowly through scaffold

questions; further analysis may be needed to determine whether these students spend more time per scaffold,

or encounter more scaffolds, than their peers.

Some trends in the regression coefficients can be understood from Table 3. We see that the most recent

summaries of percent correct on main questions seem to be most important for predicting MCAS scores, in

contrast to percent correct on scaffolds where early summaries appear to be significant. In addition we see

that time spent on incorrectly answered scaffolds seems to matter more in the early months. The last two

variables: number of completed scaffolds per minute and number hints and incorrect main questions per

main question seem to matter in later months.

Two other aspects of Table 3 are worth noting. First, even when the coefficients are not significant, the

magnitudes of the coefficient for the two percent correct scores tends to be higher for the later months’ sum-

maries in each model (this seems especially true for main questions, less so for scaffolds). Thus the linear

models are to some extent “downweighting” old information about each student’s performance, in making

MCAS predictions. Second, and an exception to the first observation, coefficients for January summaries

tend to be large and/or significant in any model in which they appear. We are not sure what makes January

special in these analyses.
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5 Conclusion

In this paper we have presented a methodology for developing functions that predict student scores on end

of year state accountability exams from dynamic testing metrics developed from intelligent tutoring system

log data. Although collecting data through the ASSISTment system takes longer than collecting paper and

pencil benchmark testing data, our analysis agreed with that of Feng et al. (2006) in that predictions by

the ASSISTment system out performed predictions by a bench mark test. The first of these variables is a

direct ASSISTment system analogue to paper and pencil test scores. The other four variables are uniquely

available in the ASSISTment environment. It is especially interesting to see that efficiency in completing

scaffold questions appears in all but two of the variables considered; such data is not easy to collect except

in the context of a computer-based tutoring and testing system.

In this paper we begin to understand the changing influence of these metrics on prediction over time.

Understanding how these metrics relate to learning as time changes is important in developing models that

could potentially inform schools about state standards. For example the Proficiency Index 2 for Massachus-

sets schools can be easily derived from these models.

We also repeated the analyes described in this paper using mean squared error (MSE) and classification

error as our cross-validation criterion and we saw simlar results. For example we used the five achievement

levels used by Massachussets to group student performance on the MCAS, and defined classification as the

total number of students missclassified in any of the five groups divided by the number of students in all five

groups. We found that the five variables selected by the MAD-based procedures described this paper, with

one addition, seconds on correct scaffolds, were also optimal when using achievement level classification

error as the stage 2 criterion.
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