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Abstract

In recent years, as cognitive theories of learning and instruction have become richer, and computational

methods to support assessment have become more powerful, there has been increasing pressure to make

assessments truly criterion referenced, that is, to “report” on student achievement relative to theory-driven

lists of examinee skills, beliefs and other cognitive features needed to perform tasks in a particular assess-

ment domain. Cognitive assessment models must generally deal with a more complex goal than linearly

ordering examinees, or partially ordering them in a low-dimensional Euclidean space, which is what item

response theory (IRT) has been designed and optimized to do. In this paper we consider some usability and

interpretability issues for single-strategy cognitive assessment models that posit a stochastic conjunctive re-

lationship between a set of cognitive attributes to be assessed, and performance on particular items or tasks

in the assessment. The attributes are coded as present or absent in each examinee, and the tasks are coded

as performed correctly or incorrectly. The models we consider make few assumptions about the relationship

between latent attributes and task performance beyond a simple conjunctive structure: all attributes relevant

to task performance must be present to maximize probability of correct performance of the task. We show

by example that these models can be sensitive to cognitive attributes even in data that was designed to be

well-fit by the Rasch model, and we consider several stochastic ordering and monotonicity properties that

enhance the interpretability of the models. We also identify some simple data summaries that are informative

about the presence or absence of cognitive attributes, when the full computational power needed to estimate

the models is not available.
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1 Introduction

In recent years, as cognitive theories of learning and instruction have become richer, and computational

methods to support educational assessment have become more powerful, there has been increasing pressure

to make assessments sensitive to specific examinee skills, knowledge and other cognitive features needed

to perform tasks in a particular assessment domain. For example Baxter and Glaser (1998) and Nichols

and Sugrue (1999) present compelling cases that examinees’ cognitive characteristics can and should be

the focus of assessment design. Similarly, Resnick and Resnick (1992) advocate standards-referenced or

criterion-referenced assessment closely tied to curriculum, as a way to inform instruction and enhance stu-

dent learning. Cognitive assessment models generally deal with a more complex goal than ranking or locat-

ing examinees in a low-dimensional Euclidean space, which is what item response theory (IRT) has been

designed and optimized to do. Rather, cognitive assessment models produce, for each examinee, a list of

skills or other cognitive attributes that the examinee may or may not possess, based on the evidence of tasks

performed by the examinee.

In this paper we consider some usability and interpretability issues for single-strategy cognitive assess-

ment models that posit a conjunctive relationship between a set of cognitive attributes to be assessed, and

performance on particular items or tasks in the assessment. The models we consider make few assumptions

about the relationship between latent attributes and task performance beyond a simple conjunctive structure:

all attributes relevant to task performance must be present to maximize probability of correct performance

of the task.

Interpretability of IRT-like models is enhanced by simple, monotone relationships between parts of

the model. For example, in addition to the usual monotonicity (M) assumption of IRT modeling (defined

below), stochastic ordering of the manifest sum-score by the latent trait (SOM), and stochastic ordering of

the latent trait by the manifest sum-score (SOL) were considered in detail by Hemker, Sijtsma, Molenaar

and Junker (1997). We consider all three properties for two conjunctive cognitive assessment models, and

we also consider a natural new monotonicity condition, which asserts that the more task-relevant skills an

examinee possesses, the easier the task should be.

To fix notation, let us consider
�

dichotomous item response variables for each of � examinees, and let
��� ���	�

if subject 
 performs task � well, and 0 otherwise, with values � � � , 
 �	� 
 � � � 
 � , � �	� 
 � � � 
 � . Let
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� �
denote person parameters (possibly multidimensional) and ��� denote item parameters (possibly multidi-

mensional). We denote the usual item response function (IRF) in IRT as ��� � � � �
	 ��� 
 � � 	���� � � � ��� � �
Most parametric and nonparametric IRT models satisfy the three fundamental assumptions: local inde-

pendence (LI)

��� 
 � ��	���� � � 
 � ��	���� � � � � � � 
 � ��	���� ��� � � � � � � � � � � � � � � � � � 	 �!� "#�
�!
� "$� ��� �

� � � % & ' � ��( ����� � � � �
� ) % & ' *

for each + , monotonicity (M), i.e., the item response functions (IRF’s) ��� � � � � are nondecreasing as a function

of
� �

, or coordinatewise nondecreasing, if
� �

is multidimensional; and low dimensionality (LD), i.e. the

dimension , of
� �

is small, relative to the number of items - . In the Rasch model for example,
� �

and ���
are each unidimensional real-valued parameters, and logit �#� � � � �
	.� ��( ��� �

Many attempts (e.g., as surveyed Mislevy, 1996) to blend IRT and cognitive measurement are based on

a linear decomposition of item parameters ��� or of person parameters
� �

. For example in the linear logistic

test model (LLTM; e.g. Fischer, 1995; Huguenard, Lerch, Junker, Patz & Kass, 1997; Draney, Pirolli, &

Wilson, 1995), the difficulty parameters ��� in the Rasch model are rewritten as linear combinations of ,
basic parameters /�0 with weights 1 � 0 , and logit ��� � � � �
	.� ��(32540 "#� 1 � 0 / 0�� The matrix 6 	 � 1 � 0 � is usually

obtained a priori on the basis of an analysis of the items into requisite cognitive attributes needed to complete

them, and / 0 is the contribution of attribute 7 to the difficulty of the items involving that attribute. On the

other hand, multidimensional compensatory IRT models (e.g. Adams, Wilson, & Wang, 1997; Reckase,

1997) follow the factor analytic tradition by decomposing the unidimensional
���

parameter into an item-

dependent linear combination of underlying traits, e.g. logit �#� � � � ��	82540 "$��9 � 0 � � 0 ( ��� �
Compensatory IRT models, like factor analysis models, can be sensitive to relatively large components

of variation in examinee ability or propensity to answer items correctly, but they are generally not designed to

distinguish finer components of variation among examinees that are often of interest in cognitive assessment.

LLTM-style models can be sensitive to these finer components of variation among items, but they are also

not designed to be sensitive to components of variation among examinees—indeed the person parameters

are often of little direct interest in an LLTM analysis.

Noncompensatory approaches, such as Embretson’s (e.g. Embretson, 1997) multicomponent latent trait

model (MLTM), are intended to be sensitive to finer variations among examinees, in situations in which
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several cognitive components are required simultaneously for successful task performance. The MLTM

asserts that successful performance on an item or task involves the conjunction of successful performances

on several subtasks, each of which follow a separate unidimensional IRT model, such as the Rasch model,

��� �����	� 
 � � 
�����
� ���
��� ��� � �	� 
 � � � 
�����

� ���
� ����� � � ���! � � "
�$# � ����� � � ���% � � "�&

Conjunctive approaches have generally been preferred in cognitive assessment models that focus on a single

student strategy for performing tasks, in assessments (e.g. Tatsuoka, 1995; VanLehn, Niu, Siler & Gert-

ner, 1998), and in intelligent tutoring systems (e.g. Corbett, Anderson & O’Brien, 1995; VanLehn & Niu,

1999). Multiple strategies are often accommodated with a hierarchical latent class structure that divides the

examinee population into latent classes according to strategy, and uses a different model within each la-

tent strategy class to describe the influence of attributes on task performance within that strategy class (e.g.

Mislevy, 1996; Rijkes, 1996). Within a single strategy, models involving more complicated combinations of

attributes driving task performance are certainly possible (e.g. Heckerman, 1996), but these become more

challenging to estimate and interpret.

In this paper we focus on two discrete latent space analogues of the MLTM, that make few assumptions

about the relationship between latent attributes and task performance beyond a stochastic conjunctive struc-

ture. In Section 2 we review the assessment of transitive reasoning in young children considered by Sijtsma

and Verweij (1999); and we discuss a simple task analysis leading to six cognitive attributes that we will

use to illustrate several points in the paper. In Section 3 we introduce the models, and explore whether they

satisfy a monotonicity condition in the latent attributes, by fitting them to the transitive reasoning data. In

Section 4 we begin to build a nonparametric IRT perspective on the models: what properties of the models

facilitate interpretation of parameter estimates? How does this help us find simple data summaries when

the full computational power needed to estimate the models is not available? A brief discussion follows in

Section 5.

2 An Assessment of Transitive Reasoning in School Children

Sijtsma and Verweij (1999) analyzed data from a set of transitive reasoning tasks, in which children are

shown objects ' , ( , ) , & & & , with physical attributes *�+ , *�, , *.- , & & & . For example the objects might be
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sticks, and the attributes might be lengths. Relationships between attributes of all pairs of adjacent objects in

an ordered series, such as
���������

and
�������
	

, are shown to each child. The child is then asked to reason

about the relationship between some pair not shown, e.g.
���

vs.
�
	

in this example. Reasoning directly from

the premises
�
�����
�

and
�
�����
	

to the conclusion
�
�����
	

, without guessing and without using any

other information, is an example of transitive reasoning (see Sijtsma & Verweij, 1999; and Verweij, Sijtsma

& Koops, 1999, for summaries of the relevant developmental psychology).

The data consist of the responses of 417 second-, third- and fourth-grade students, on nine transitive

reasoning tasks of the sort just described. The tasks were generated by considering three types of objects

featuring different physical attributes: wooden sticks differing in length by 0.2cm per pair of sticks, wooden

disks differing in diameter by 0.2cm per pair of disks, and clay balls differing in weight by 30g per pair of

balls. Each task involved three, four or five of the same type of object. For a three object task, there were two

premises, AB (specifying the relationship between
���

and
�
�

) and BC (similarly for
�
�

and
�
	

), and one

item, AC (asking for the relationship between
���

and
�
	

). For a four object task, there were three premises,

AB, BC, and CD, and two items, AC and BD. For a five object task there were four premises, AB, BC,

CD, DE and three items AC, BD, and CE. Tasks, premises, and items within tasks, were presented to each

examinee in random order. Examinees’ explanations for each item response were also recorded, to evaluate

strategy use. A summary of the tasks is given in Table 1.

Sijtsma and Verweij (1999) showed that if each item within a task was scored as correct when both the

correct answer was given and a correct deductive strategy based on transitive reasoning was evidenced in

the examinee’s explanation—referred to by them as the DEDSTRAT data—and if these dichotomous item

scores were summed within tasks to give task scores, then the resulting task response data were well-fit

by a polytomous monotone homogeneity model (that is, by a model assuming only local independence,

unidimensionality and monotonicity; cf. e.g. van der Ark, 2001).

In order to facilitate analyses with binary-response models, we have recoded the Sijtsma and Verweij

DEDSTRAT data somewhat further. In our recoding, a task is scored as correct if all the items within that

task were answered correctly using a correct deductive strategy; otherwise the task was scored as incorrect.

This leads to a 417 � 9 array of 1’s (correct) and 0’s (incorrect). In this array, the scores for all examinees

on tasks 5 and 6, both involving size of disks, were 0’s. Relatively large visual differences between the sizes
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Number & Type Featured Number of Number of Rasch Difficulties
Task of Objects Attribute Premises Items EAP PSD

Task 1 3 Sticks Length 2 1 –0.38 0.16
Task 2 4 Sticks Length 3 2 1.88 0.17
Task 3 5 Sticks Length 4 3 6.06 0.50
Task 4 3 Disks Size 2 1 –1.78 0.17
Task 5 4 Disks Size 3 2 12.60 5.12
Task 6 5 Disks Size 4 3 12.40 4.86
Task 7 3 Balls Weight 2 1 –3.40 0.22
Task 8 4 Balls Weight 3 2 3.95 0.25
Task 9 5 Balls Weight 4 3 8.07 1.23

Table 1: The nine transitive reasoning tasks of Sijtsma and Verweij (1999). Expected a posteriori (EAP)
estimates and posterior standard deviations (PSD) for the difficulty parameters in a Bayesian fit of the Rasch
model to the data are recorded on the right.

of the disks (disk diameters varied linearly, so disk areas varied quadratically) seem to have encouraged

examinees to arrive at a correct answer for some items by direct visual comparison of the disks in the item,

rather than by a deductive strategy; such responses would be coded as 0’s (deductive strategy not used) in

the DEDSTRAT data.

These nine binary DEDSTRAT tasks were fit well by a dichotomous monotone homogeneity model:

After deleting tasks 5 and 6, whose responses were all zeros, the program MSP (Molenaar & Sijtsma, 2000)

reported a very high scaling coefficient (
������� � �

) for the seven remaining tasks and 417 respondents of�	�
��� � �
and taskwise scaling coefficients

�
�
between 0.78 and 1.00 (cf. e.g. Sijtsma, 1998), and found no

sample violations of manifest monotonicity (Junker & Sijtsma, 2000). A Rasch model was also fitted, using

RSP (Glas & Ellis, 1994); again tasks 5 and 6 were deleted, and examinees with all-zero responses were

deleted causing item 9 to have all zero responses in the reduced data set, so it was deleted as well. For the

remaining six items and 382 respondents, standard Rasch fit statistics (e.g. as discussed by Glas & Verhelst,

1995) indicated very good fit as well. The Rasch model was refitted using BUGS 0.6 (Spiegelhalter, Thomas,

Best & Gilks, 1997) which uses a Bayesian formulation of the model that does not necessitate deleting any

items or persons; similarly good fit was found. The item difficulty parameters � � estimated by BUGS,

based on a fixed normal � distribution and a common ��� ����� ������ prior for the � ’s with weak hyperpriors
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Context Premise
Length Size Weight 1

� �
& 2
� �

3
� �

4
� �

��� 	
1 2 3 4 5 6

1 1 0 0 1 0 0
2 1 0 0 1 1 0
3 1 0 0 1 1 1
4 0 1 0 1 0 0
5 0 1 0 1 1 0
6 0 1 0 1 1 1
7 0 0 1 1 0 0
8 0 0 1 1 1 0
9 0 0 1 1 1 1

Table 2: Decomposition of the Sijtsma and Verweij (1999) tasks (
���
 � � � � � � ) into hypothetical cognitive
attributes ( ����
 � � � � � � ). ��� 	 ��
 if and only iff task 
 requires attribute � .

��������� � � 
 � �  and !#"�$� � Gamma � � � � 
 � � � � 
  , are recorded in the last two columns of Table 1.

If, however, we desire to use the transitive reasoning scale as evidence in designing or improving an

instructional program for children, or to provide feedback on particular aspects of transitive reasoning to

teachers and students, then analyses with the monotone homogeneity model and the Rasch model will not

help, because they only tell us the ranks or locations of examinees on a unidimensional latent scale. Instead

we must explicitly model the task performance in terms of presence or absence of particular cognitive

attributes related to transitive reasoning.

To illustrate, let us consider the rough task analysis for these nine tasks in Table 2, corresponding to

the task summary in Table 1. The first three attributes are simply the ability to recognize or reason about

transitivity in the context of length, size and weight. In addition, the tasks place differential load on subjects’

working memory capacity (e.g. Carpenter, Just & Shell, 1990; Kyllonen & Christal, 1990). Thus the next

three cognitive attributes correspond to three levels of working memory capacity: manipulating the first

two premises given in a task in working memory; manipulating a third task premise, if it is given; and

manipulating a fourth task premise, if it is given.

The issue here is not strictly model-data fit. If we wish to know whether particular students can focus on

a transitive reasoning strategy in the context of weight problems, then the total score on the nine items—the
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central examinee statistic in Rasch and monotone homogeneity models generally—will not help. Similarly,

an LLTM can tell us whether additional working memory load makes tasks more difficult on average, but

it cannot tell us whether a particular student has difficulty with maintaining a third premise in solving

transitive reasoning problems. In order to answer these questions we need to turn to models that partition

the data into signal and noise differently than do unidimensional IRT models. Even if the data was designed

for a unidimensional IRT model, as was the DEDSTRAT data, this repartitioning can be informative (e.g.

Tatsuoka, 1995); and of course if we have in mind to use a cognitive assessment model we may wish to

design assessment tasks, data collection, and data coding for analysis with such a model.

3 Two IRT-like Cognitive Assessment Models

We focus here on two discrete latent attribute models, that allow both for modeling the cognitive loads of

items and inferences about the cognitive attributes of examinees. In both models the latent variable is a

vector of 0’s and 1’s for each examinee, indicating the absence or presence of particular cognitive attributes

for that examinee, and we use Table 2 to determine which attributes the examinee needs to perform each task

correctly. As in Section 1, we will assume there are
�

examinees and � binary task performance variables,

and in addition we suppose there is a fixed set of � cognitive attributes involved in performing these tasks;

different subsets of attributes may be involved in different tasks. For both models we define

��� �
= 1 or 0, indicating whether or not student � performed task � correctly;

	 � 

= 1 or 0, indicating whether or not attribute � is relevant to task � ; and

� � 
 = 1 or 0, indicating whether or not student � possesses attribute � .

(1)

The values
	 � �

are fixed in advance, like the design matrix in an LLTM model. The
	 � �

can in fact be

assembled into a Q-matrix of the type discussed by Tatsuoka (1995). Figure 1 illustrates the structure defined

by
��� �

,
	 � 


and � � 
 graphically as a Bayes network.

We wish to make inferences about the latent variables � � 
 , or to make inferences about the relation-

ship between these attributes and observed task performance. Both models are most easily specified using

the latent response framework elaborated by Maris (1995), which is closely related to the notion of data

augmentation in statistical estimation (e.g. Tanner, 1996).
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�� ��
Attribute ��� � �� ��

Attribute ��� � �� ��
Attribute ��� 	 �� ��

Attribute ��� 
 �� ��
Attribute ��� �

Task �
� � Task ��� � Task �
� 	

� � � � � � � � � �

����������

��������� � �

� � � � � � � � ����

��������� �

��������� �

Figure 1: One-layer Bayes network for discrete cognitive attributes models. For examinee � , � � � �"! or 0
describes presence or absence of latent attribute # ; �$� % �&! or 0 describes success or failure performing
task ' ; and ()% � �"! or 0 describes the presence or absence of edges in the graph. Tasks are conditionally
independent given attributes (local independence); attributes relevant to a task may combine conjunctively,
as in models (3) and (5), or nonconjunctively, to influence task performance.

3.1 Deterministic Inputs, Noisy “And” Gate (DINA)

The first model we consider has been the foundation of several approaches to cognitive diagnosis and as-

sessment (see the references in Tatsuoka, 1995; and Doignon & Falmagne, 1999). It was considered in detail

by Haertel (1989; see also Macready & Dayton, 1977) who identified it as a restricted latent class model. In

this model, we also define latent response variables

* � % �,+� - .�/ 0 1�� � � �2�
3+� 14� � .�/ 0� �65

indicating whether or not student � has all the attributes required for task ' . In Tatsuoka’s terminology, the

latent vectors ��� 7 �68 ��� � 5 9 9 9 5 ��� 3;: are called “knowledge states”, and the vectors
* � 7 �68 * � � 5 9 9 9 5 * � < : are

called “ideal response patterns”, since they represent a deterministic prediction of task performance from

each examinee’s knowledge state.

The latent response variables
* � % are related to observed task performances � � % according to the prob-

abilities = % �">�? �
� % �A@�B * � % �C! D and E % �A> ? ��� % �6!FB * � % �"@ D . Note that = % and E % are merely error

probabilities—the false negative and false positive rates—in a simple signal detection model for detecting
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� � �
from noisy observations � � � . We have chosen the symbols � � and � � to be mnemonic, thinking of ex-

aminees’ slips and guesses, but genuine slipping and guessing behavior may be the least important reason

for observing � � ����
	���
 �� � . Other reasons include poor wording of the task description for examinees, in-

adequate specification of the � matrix, use of an alternative solution strategy by the examinee, and lack

of model fit generally. DiBello, Stout, & Roussos (1995) address this issue in detail in their discussion of

what they call the positivity of a task with respect to a cognitive attribute, to which we shall return below in

Section 4.

The IRF for a single task is

��� � � � ��� � ��� ��� ����� � �"! � � # $ % 
 �'& ( $ % 
�*) � � � 	 � + # � (2)

Note that each
� � �

functions as an “and” gate (i.e., it is a binary function of binary inputs whose value is 1

if and only if all the inputs are 1’s), combining the deterministic inputs 	,��
 �� � ; and each task performance

� � � is modeled as a noisy observation of each
� � �

(cf. VanLehn, Niu, Siler & Gertner, 1998). We refer to the

model hereafter as the DINA (deterministic inputs, noisy “and”) model. From (2) it is also clear that
� � � 	 � + #

will be coordinatewise monotone (M) in 	 � + if and only if �-! � ��. � � . Assuming local independence and

independence among examinees, the joint likelihood for all responses under the DINA model is

��� � � � �0/ � � �2143 � 5�� ��� �'� �6�7�
89� :
&
;9� :
&
� � � 	 � + # < % 
 � �"! � � � 	 � + # � & ( < % 


� 89� :
&
;9� :
&
= � �"! � � # < % 
 � & ( < % 
�?> $ % 
 = � < % 
� � �"! � � # & ( < % 
 > & ( $ % 
 (3)

3.2 Noisy Inputs, Deterministic “And” Gate (NIDA)

The second model we consider was recently discussed by Maris (1999) for example, and has been used as

a building block in more elaborate cognitive diagonsis models (e.g. DiBello et al., 1995). In this model we

take � � � , � � � and 	 � � as in (1), and define latent response variables

@ � � � = 1 or 0 indicating whether or not student 3 ’s performance in the con-

text of task 5 is consistent with possessing attribute A
The latent response variables @ � � � are related to the student’s knowledge state 	 � + according to the probabil-

ities � � � �7� @ � � � �CB'� 	 � � �D� � � � � �
� � and � � � �7� @ � � � �D� � 	 � � �CBE� � � � �D� � ; and for completeness
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we define
��� � � � ���
	�� 
�� ������� ��� ����� ���
	

, regardless of the value
�

of

�� �

. Again, � � and � � are

merely mnemonically-named false negative and false positive error probabilities in a signal detection model

for detecting

�� �

from noisy
� � � �

; as discussed above for the DINA model, the real causes for observing� � � �����
� �! "� �
are likely much more varied than simple slipping and guessing behavior. Observed task perfor-

mance is related to the latent response variables via # � � �%$ � &  �! " '�( � � � � �)$�*� '�( � � � � , so that the IRF for

this model is ��� # � � �)	�� +�� ,-� ./��� *0� '�( ��� � � � � �)	 � 
 � � � � � � �� *0� '�( 1 2 	�3 � � 4 5 6 " � ( 7 5 6 "�98  �! " � *0� '�( :;	�3 � �� �=< 5 6 "  �! " *0� '�( �  �! "� �
� � 2 
 � > 4 ?
(4)

In this model, noisy inputs
� � � �

reflecting possession of attributes

�� �

by examinees are combined in a

deterministic “and” gate # � � ; we refer to the model hereafter as the NIDA model (noisy inputs, deterministic

“and”). Again it is clear that the vector

 � >

plays the role of the latent variable @ � , that � � and � � play the role

of A � , and that this IRF is monotone in the coordinates of

 � >

as long as
2 	�3 � � 4CB � � . The joint model for

all responses in the NIDA model is��� # � � �ED � � ��FHG � I�� +�� ,-� ./���KJ0� '�(�L0� '�( � � 2 
 � > 4 M 6 ! � 	�3�� � 2 
 � > 4 � ( 7 M 6 !� J0� '�( L0� '�(�N *0� '�( 1 2 	�3 � � 4 5 6 " � ( 7 5 6 "�98  �! "-O M 6 ! N 	�3 *0� '�( 1 2 	�3 � � 4 5 6 " � ( 7 5 6 "�P8  �! "-O ( 7 M 6 ! ?
(5)

3.3 Exploring Monotonicity

Both the DINA and NIDA models are stochastic conjunctive models for task performance: under the mono-

tonicity conditions
	�3 � B � , examinees must possess all attributes listed for each task, in order to maximize

the probability of successful performance of that task. Both the DINA and NIDA models are restricted latent

class models (cf. Haertel, 1989), and therefore closely related to IRT models, as we have tried to suggest

in the joint likelihood expressions (3) and (5). Indeed, if one replaces the IRF’s
� � 2 
 � > 4

in these likelihoods

with standard logistic IRF’s
� � 2 @ � 4 one immediately returns to a familiar IRT setting. They can also both be

seen as simple one-layer Bayes inference networks for discrete variables (e.g. Mislevy, 1996; VanLehn, Niu,

Siler & Gertner, 1998) for task performance, as illustrated in Figure 1. In general Bayes net models need
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not be conjunctive (e.g. Heckerman, 1996) but when examinees are presumed to be using a single strategy,

conjunctive models seem natural; DiBello et al. (1995) provide a detailed analysis of conjunctive cognitive

modeling in the development of their “Unified Model” for cognitive assessment.

To explore whether monotonicity actually holds in real data, we used BUGS 0.6 (Spiegelhalter et al.,

1996) to fit the DINA and NIDA models to the dichotomous DEDSTRAT data described in Section 2, using

the
�

-matrix in Table 2. We used Bayesian formulations of the models, in which population probabilities

�������	� 
�� ����
 � were assumed to have independent, uniform priors Unif[0,1] on the unit interval. Inde-

pendent, flat priors Unif[0, � ��� � ] and Unif[0, � ��� � ] were also used on the false positive error probabilities

� � � � � � � � � , and false negative error probabilities ��� � � � � � � � , in each model. When the upper bounds � ��� � and

� ��� � are small, these prior choices tend to favor error probabilities satisfying the monotonicity conditions


�� ����� ; these upper bounds were also estimated in the model, using Unif[0,1] hyperprior distributions. For

each model we ran five Markov Chain Monte Carlo (MCMC) chains of length 3000 from various randomly-

chosen start points; the first 2000 steps of each chain were discarded as burn-in, and the remaining 1000

steps were thinned by retaining every fifth observation, for a total of 200 observations per chain. Both mod-

els showed some evidence of under-identification (slow convergence and multiple maxima), as would be

expected from Tatsuoka (1995) and Maris (1999). Tables 3 and 4 list tentative estimated posterior means

(expected a posteriori values, or EAP’s) and posterior standard deviations (PSD’s) for each set of error prob-

abilities in the two models, using 1000 MCMC steps obtained by pooling the five thinned chains for each

model.

Several observations can be made regarding Tables 3 and 4. First, most of the point estimates satisfy

the monotonicty condition 
�� � �!� , or equivalently, ��"��	# 
 (the exceptions are the error probabilities

for tasks 4 and 8 under the DINA model). Examination of the posterior distributions in each model shows

that the posterior probability that 
�� ���$� for each task (DINA model) or latent attribute (NIDA model)

is near 0.50 in each case: this certainly does not contradict the hypothesis that M holds, but neither is it a

strong confirmation of M. Second, in the DINA model, tasks 5 and 6 on which all examinees scored zeros

yield the very plausible estimates %� & �('��� ) � & �*
�+ , � & ��- �.�$- � - - / ( ��021(�3- � - - / ); clearly there is no

evidence of guessing or alternate solution strategies in the performance data for these tasks! Third, except

for these two tasks, all the error probabilities in the DINA model are near their prior means, with fairly large
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�� � �� �
Task (� ) EAP PSD EAP PSD ��� �� �	� �� � ? 
 � ��� �� � � 
 �� � ��� 
 � ��� �� � � 
 �� � �

1 0.478 0.167 0.486 0.277 � 1.15
2 0.363 0.162 0.487 0.281 � 1.85
3 0.419 0.255 0.479 0.292 � 1.51
4 0.657 0.199 0.488 0.279 � 0.55
5 0.002 0.002 0.462 0.270 � 581.09
6 0.002 0.002 0.464 0.270 � 576.43
7 0.391 0.420 0.486 0.274 � 1.65
8 0.539 0.242 0.489 0.275 � 0.89
9 0.411 0.162 0.480 0.283 � 1.55�� ��� � �� ��� �

0.910 0.081 0.910 0.079

Table 3: Tentative expected a posteriori (EAP) estimates and posterior standard deviations (PSD) for the
task-wise error probabilities � � and � � in the DINA model, for the transitive reasoning data, with � -matrix
as in Table 2. The last column is discussed in Section 4.2.

�� � �� �
Attrib ( � ) EAP PSD EAP PSD ��� �� ��� �� � ? � ����  �!  #" $ %&� ����  �!  

1 0.467 0.364 0.369 0.392 � 1.351 0.301
2 0.749 0.207 0.161 0.125 � 1.120 0.113
3 0.764 0.246 0.005 0.009 � 1.302 0.264
4 0.364 0.319 0.163 0.318 � 2.299 0.833
5 0.176 0.168 0.785 0.129 � 1.222 0.200
6 0.061 0.115 0.597 0.294 � 6.607 1.888�� ��� � �� ��� �

0.877 0.109 0.877 0.108

Table 4: Tentative expected a posteriori (EAP) estimates and posterior standard deviations (PSD) for the
attribute-wise error probabilities � � and � � in the NIDA model, for the transitive reasoning data, with � -
matrix as in Table 2. The last two columns are discussed in Section 4.2.
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posterior SD’s, suggesting that in the DINA model the attributes outlined in Table 2 are not very predictive

of successful task performance. On the other hand, the error probabilities in the NIDA model seem to have

moved farther from their prior means, and in some cases with relatively small PSD’s. For example, attributes

4, 5 and 6, indicating increasing cognitive load, have decreasing ��� ’s and roughly increasing � � ’s, reflecting

the increasing difficulty of tasks involving these attributes. Finally we note that the EAP estimates of ����� �
and � ��� � in both models are above 0.870, with small PSD’s. This reflects the large PSD’s (and hence large

estimation uncertainty) associated with at least some of the error probabilities in each model; in addition it

suggests that the prior preference for the monotonicity condition 	�
���
 � was not very strong, so that the

evidence for monotonicity we see in the model fits may reflect the data and not the prior distribution choices.

4 A Nonparametric IRT Perspective on Cognitive Assessment Models

One of the strengths of the nonparametric IRT (NIRT) approach is that it encourages researchers to consider

fundamendal model properties that are important for inference about latent variables from observed data. In

this section we consider the DINA and NIDA models, described in (3) and (5) respectively, in this context.

We begin by reviewing how parameter estimates in the two models depend on the data, and then continue

with a broader discussion of NIRT-like properties, propelled by these two models. We examine standard

NIRT that facilitate interpretation of parameter estimates in these cognitive assessment models, and explore

other general properties that suggest themselves as we compare the DINA and NIDA models.

4.1 Data Summaries Relevant to Parameter Estimation

Junker (2001) considered the DINA model, (3), as a possible starting place for formulating a nonparametric

IRT for cognitive assessment models. Using calculations for the complete conditional distributions often

employed in Markov Chain Monte Carlo (MCMC) estimation algorithms, he showed that (a) estimation

of the “slip” probabilities � � were sensitive only to examinees’ performances ��� � on tasks for which they

were hypothesized to have all the requisite cognitive attributes (� � ����	 ); similarly (b) estimation of the

“guessing” probabilities � � depended only on examinees’ task performances ��� � corresponding to tasks for

which one or more attributes were missing ( � � ����� ); and finally (c) estimation of � � � , indicating posession
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of attribute
�

by examinee � , was sensitive only to performance on those tasks for which examinee � was

already hypothesized to possess all other requisite cognitive attributes.

Indeed, we may calculate the posterior odds of ��� ���	� , conditional on the data and all other parameters,

from Junker’s (2001) complete conditional distribution for ��� � . These odds turn out to be
�� 
�� ��� ������ ����� � � � �� �! #" ��$

�� 
%��&'( � ���)� �� � $ ��� � �� �*��� � � � �� �+ #" � , -.%/

� " $#0%1� �32 � 40 1� � 2 5 4 (6)

where 637 8 � 9� � �;:=< >
 � ?  #" @

%� � � < , which indicates presence of all attributes needed for task A , except for

attribute
�

, and 0%1� �32 � 4 B 0C1� ��2 5 4 are the prior odds. The first product in (6) is constant in the data. From the

second product, we see that the odds of ��� �D�E� are multiplied by F 2 ���G� � 4 B � � H $ F 2 ��� � � 4 B � � H for each

additional correct task A , assuming that task A involves attribute
�

and that all other attributes needed for

task A have been mastered; otherwise there is no change in the odds. If monotonicity ( �I� � �KJ � � ) holds,

this multiplier is greater than one. Table 3 shows that these multipliers range from 0.55 to 1.85, except for

tasks 5 and 6. (Tasks 5 and 6 have very high multipliers because the model was able to estimate � � ’s near

zero, since no one got those tasks correct.) Combining the influence of these multipliers with the effect of

the 637 8 � 9� � in (6), we see that getting additional tasks right in this model may not appreciably move the odds

that an examinee possesses any one of the latent attributes, a phenomenon previously noted by VanLehn et

al. (1998).

We now turn to a similar analysis of the NIDA model. We consider a Bayesian version of the model,

in which the likelihood (5) is multiplied by unspecified, independent priors 0 2 L 4��M: � � 0 1� �32 �%� � 4 , 0 2 N 4��: � 0#O� 2 � � 4 , and 0 2 P 4��Q: � 0%R�32 � � 4 . We again consider the complete conditional distributions that figure in

the development of MCMC algorithms; these are the distributions of each parameter in turn, conditional on

the values of all other parameters as well as the data.

The complete conditional distribution for any parameter, such as the “guessing” probability � � , is pro-

portional to the product of those factors in (5) containing that parameter, ��� , and the prior density 0CO� 2 � � 4 for

the parameter. For � � , this turns out to be�� ? 1 � �

CS �� ?  #" �


%�UT V � � � � W / � " T ��� V � � � � W
� 8 / � " 0 O� 2 � � 4
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where � � ������ �	 ��

� ����� � � � � � ��� � � � �������� �! 
Similarly, the complete conditional distribution for each � � is proportional to�� " � � # 	 � �$ " ��� # 	 �

% � � � � ����� � � & ' � � % ��� � � � � ���(� � � & � � ' � �
)
*� � � � �
We see at once that estimates of � � depend precisely on those task responses for which attribute + was called

for but not present in the responding examinees; similarly � � depends on those task responses for which

attribute + was called for and was present in the responding examinee.

The complete conditional distribution for each latent attribute indicator , � � - is proportional to% � � � � ���(� � � � � # � � � � � #�.& / �# % ��� � � � � ���(� � � � � # � � � � � #�0& 1 # � / �# ) �� � � , � � �
where 2 � � �43 $ " ��� # 	 ��5 � $ �63�7$ 	 ��5 � $ 8 $ �� number of tasks correct involving attribute +9 � � 3 7$ 	 � 8�$ �� total number of tasks involving attribute +

(7)

and with � � � defined as before. After a little algebra, we conclude that the posterior odds of , � � � � , condi-

tional on the data and all other parameters, is equal to: �;��� �� �=< / �#?> ��� � � � � ���(� � ���� � � � � �A@ 1 # � / �#�B ) �� � � � �) �� � � C � (8)

in the NIDA model. When monotonicity ( �D�E� �GF � � ) holds, the first term in parentheses is greater than

one and the second term in parentheses is less than one, so that the odds of , � � � � increase as

2 � � ,
the number of tasks involving attribute + that the examinee has gotten correct, increases. Essentially, the

conditional odds (8) of , � � � � are multiplied by � �H�I� � � J � � for each additional correct task involving

attribute + —regardless of the examinee’s status on the other attributes. (The quantity � � � that appears in (8)

is typically less than � C �!K , so the second term in parentheses in (8) is negligible.) From Table 4, we see that

these multipliers range from approximately 1.1 to approximately 1.4, except for the higher multipliers for

attributes 4 (cognitive capacity to handle the first two premises in a task) and 6 (cognitive capacity to handle
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the fourth premise in a task). Attribute 4 has moderately low estimated guessing and slip probabilities, and

attribute 6 has a very low estimated guessing probability, which increase the model’s certainty that each of

these two attributes is possessed, when an examinee gets a task correct that depends on that attribute.

Hartz, DiBello and Stout (2000) point out that the quantities
� ������� � 	 
 �

measure what DiBello et al.

(1995) call positivity, which is roughly the extent to which the task performance is a determinstic function of

the knowledge state �
� � . Our analysis of (8) shows that attributes with high positivity are strongly credited in

the NIDA model when the corresponding tasks are performed well. More generally, comparing the posterior

odds (6) for the DINA model with the posterior odds (8) for the NIDA model, we see that the posterior odds

of � � ����� tend to be more sensitive to the data under the NIDA model than under the DINA model.

4.2 Three NIRT Monotonicity Properties

We have seen already that LI holds by construction in these models, and LD holds as long as we keep the

number of cognitive attributes � small, relative to the number of tasks � . As discussed in Section 3, M holds

as long and
��������


for each task or latent attribute, and there some evidence in favor of this property in

the example data set. We briefly consider here the SOM and SOL properties (defined below) discussed by

Hemker et al. (1997), and introduce a new monotonicity property that has some of the intuitive appeal of

monotonicity in a conventional unidimensional IRT model.

For models satisfying LI, M and LD, it follows immediately from Lemma 2 of Holland and Rosenbaum

(1986) that for any non-decreasing summary

�� ���

of
����� � � ! " " " ! �$#��

, %'& 
�� ���)( �
� � * is non-decreasing

in each coordinate �
� � of �
� � ; this implies the SOM (Stochastic Ordering of the Manifest score
� +

by the

latent trait) property of Hemker et al. (1997), that ,'& � +-�/.0( �
� � * is non-decreasing in each coordinate

� � � of �
� � . Not much is known about the inverse and more useful property SOL (Stochastic Ordering of the

Latent variables by the manifest score
�$+

; Hemker et al., 1997), that ,'& �1� �0��. � ! " " " ! �
� 2 ��. 2 ( �'+��� * is nondecreasing in
�
, when the latent “trait” is multidimensional. We consider here a weaker, related

property that can be studied using our work in Section 4.1, namely that

,�3��
� � ���5444 �
� � ! " " " ! � � 6 � 7 � 8 ! � � 6 � +1� 8 ! " " " ! �
� 2 ! and 9: ; <>= ? @ � � � : ���)A (9)

is non-decreasing in
�
, with all other model parameters fixed.
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For the NIDA model, property (9) is immediate from inspecting the posterior odds (8) of ��� ����� ,
since by (7), � � � equals the sum 	�
 � 
�� � ����� � 
 on the right in (9). However, (9) need not hold for the DINA

model, as inspection of the corresponding odds (6) of ��� ����� in the DINA model shows. Indeed, if the

products of odds � � ����� 
 � � � 
  "! � � ����# 
 � � # 
  vary greatly, it need not be the case that (6) is monotone in

� � � � 	$
 � 
�� � �%�&� � 
 , the number of correctly performed tasks involving attribute ' .
Finally we turn to a new kind of monotonicity that seems plausible for some cognitive assessment

models. In a standard monotone unidimensional IRT model of the kind reviewed in Section 1, the more

of ( there is, the higher the probability of getting a task right. What corresponds to this in the NIDA and

DINA models? One answer might be, the more task-relevant latent attributes the examinee has, the higher

the probability of correct task performance should be. In other words, we are asking whether each of the

IRF’s in equations (2) and (4) is nondecreasing in

� � 
 �*)+� �%�
��� � , 
 �-� number of task-relevant attributes possessed

This monotonicity property is easy to see for the DINA model, since in that model . 
 � � � / � � � �0�
# 
 � 1 2 � � � 3 1 2 �
 equals � 
 as long as � � 
�4 	 )� �%� , 
 � , and switches to ����# 
 as soon as � � 
 � 	 )� �%� , 
 � . For

the NIDA model it is not so obvious, and in fact not true in general.

In the NIDA model, . 
 � � � / � �65 )� ��� � � ����# � � � � �  7 2 � 
�� � 5 )� ��� �

�� �� varies with � � 
 through the first

term, since 8 is held fixed. The logarithm of this term is 	 )� ��� � � � , 
 �%9 : ; � �"�<# � � � � �>= Fixing ? and 8 , setting

@ � �A� � � , 
 � and B � � 9 : ; � �C�D# � � � � � , monotonicity of . 
 � � � / � in � � 
 in the NIDA model is equivalent to

E<F GH � I J&�"K L�� )
+
� ���
@ � B �NM E<O PH � I J��"K )

+
� ���
@ � B �>Q (10)

for each # , where @ L � 	 � @ � . This constrains the variability of the B � � 9 : ; � �C�D# � � � � � . When the @ � are

unrestricted, it is easy to see that the condition (10) is equivalent to the single inequality
K R L%�+
� ��� B&S

� M )+� � ) 3"K R L��
B&S� (11)

where the B S � are the B � renumbered so that B S �-T B S U T = = = T B S � , and # V is the largest integer not exceeding

� W ��� � � X . In other words, (10) holds for all Y and all H , if and only if it holds for #>V (the largest possible # ),
and the H ’s that allocate the smallest # V�Z[� B ’s to one sum and the largest # V B ’s to the other. If either

(10) or (11) holds, then all the IRF’s . 
 in the NIDA model will be monotone in � � 
 .
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For the NIDA parameter estimates in Table 4, we find that ��� � ������ ������
	���
 ��� ������
 � ����	������������ . Thus

there is no guarantee of monotonicity for all the fitted IRF’s ����� � � ! " in #$� � . However, the % & are restricted in

the NIDA model by the constants ' � & ; in the case of the transitive reasoning data the ' � & ’s limit the number

of attributes that can affect each task to two, three or four. It is easy to see that the two-attribute tasks, tasks

1, 4, and 7, have IRF’s that are monotone in #(� � (indeed any two-attribute task satisfies the condition (11)

vacuously). On the other hand, none of the other tasks have monotone IRF’s. Looking at Table 4, the problem

is the vast disparity between attribute 4 (maintaining the first two premises of a task), with � )�	*��
 + , , and

attribute 5 (maintaining the third premise), with � � 	-��
 � � � . Task two involves attributes 1, 4, and 5, for

example, and � � �.� � ����) , violating condition (10); hence the IRF � � � � � ! " will not be monotone in #(� � .

5 Discussion

Standard unidimensional IRT modeling may be less relevant, even if the fit is good, if the goal of testing is

cognitive assessment or diagnosis. We have explored two single-strategy, conjunctive latent class models that

have appeared in the educational assessment literature (e.g., Haertel, 1989; and Maris, 1999), and showed

that they satisfy familiar multidimensional generalizations of standard IRT assumptions. Using data from an

investigation of scale construction for transitive reasoning (Sijtsma & Verweij, 1999), we fitted the models

and showed that, in particular, IRT monotonicity is plausible for most tasks under both model fits.

The cognitive analysis in our example was not deep psychologically, and the data had been designed

originally to fit a standard IRT model, not a cognitive assessment model. Nevertheless both cognitive asses-

ment models found interesting structure at the cognitive attributes level, a phenomenon that has also been

observed in applications of Tatsuoka’s (1995) rule-space methodology to standardized testing data created

with IRT technology. We can imagine that data designed from scratch to be informative about a handful of

cognitive attributes through one of the two cognitive assessment models we considered, would fare quite

well in terms of model fit and ability to infer about the presence or absences of particular attributes.

We also began considering these models from a nonparametric IRT (NIRT) perspective, seeking to un-

derstand both previously-identified, as well as new, nonparametric monotonicity properties, for example.

This enterprise could be widened along the lines of Junker (2001), who considers a variety of NIRT prop-

erties in the context of cognitive assessment models, and could be applied to natural generalizations of the
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models we have considered, such as the Unified Model of DiBello et al. (1995) and Hartz et al. (2000). A

NIRT perspective can help with the interpretation and usability of cognitive assessment models. For exam-

ple, a natural new monotonicity condition was considered, which asserts that the more task-relevant skills

an examinee possesses, the easier the task should be. The condition holds “almost for free” in one of the

models we considered, and it puts interesting constraints on the parameters of the other model.

Finally, we related some model parameters to simple and useful data summaries, such as the number of

correctly performed tasks involving a particular attribute. Such summaries are useful when the machinery

needed to estimate the models is not available, such as in embedded assessments (e.g. Wilson & Sloane,

2000). We hope that this is a start down the path toward a clear theory of which data summaries are relevant

to the cognitive inferences we wish to make, over a wide variety of cognitive assessment models; such a

theory would be an important contribution from the interface between nonparametric and parametric IRT

methodology.
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