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Abstract

We consider procedures which select the bandwidth in local linear regression by maximizing

the limiting power for local Pitman alternatives to the hypothesis that µ(x) ≡ E(Y | X = x) is

constant. The focus is on achieving high power near a covariate value x0 and we consider tests

based on data with X restricted to an interval containing x0 with bandwidth h. The power

optimal bandwidth is shown to tend to zero as sample size goes to infinity if and only if the

sequence of Pitman alternatives is such that the length of the interval centered at x0 on which

µ(x) = µn(x) is nonconstant converges to zero as n → ∞. We show that tests which are based

on local linear fits over asymmetric intervals of the form [x0 − (1 − λ)h, x0 + (1 + λ)h], where

−1 ≤ λ ≤ 1, rather than the symmetric intervals [x0−h, x0+h] will give better asymptotic power.

A simple procedure for selecting h and λ consists of using order statistics intervals containing

x0. Examples illustrate that the effect of these choices are not trivial: Power optimal bandwidth

can give much higher power than bandwidth chosen to minimize mean squared error. Because

we focus on power, rather than plotting estimates of µ(x) we plot a correlation curve ρ̂(x) which

indicates the strength of the dependence between Y and X near each X = x. Extensions to

more general hypotheses are discussed.

1 Introduction. Local Testing and Asymptotic Power.

We consider (X1, Y1), (X2, Y2), . . . , (Xn, Yn) i.i.d. as (X,Y ) ∼ P and write Y = µ(X) + ε where

µ(X) ≡ E(Y |X) and β(x) ≡ dµ(x)/dx are assumed to exist, and ε ≡ Y −µ(X). We are interested

in a particular covariate value x0 and ask if there is a relationship between the response Y and

the covariate X for X in some neighborhood of x0. More formally, we test the hypothesis H that
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β(x) = 0 for all x against the alternative K that β(x) 6= 0 for x in some neighborhood of x0. Our

focus is on achieving high power for a covariate value x0 for a unit (patient, component, DNA

sequence, etc.) of interest. We want to know if a perturbation of x will affect the mean response

for units with covariate values near x0.

Our test statistic is the t-statistic th(x0) based on the locally linear estimate β̂h(x0) of β(x0)

obtained as the slope of the least squares estimate of β(x0) computed for data in the local data set

Dh(x0) ≡ {(xi, yi) : xi ∈ Nh(x0)} , with Nh(x0) ≡ [x0 − h, x0 + h] .

The bandwidth h serves as a lense with different lenses providing insights into the relationship

between Y and X (Chaudhuri and Marron (1999, 2000) did “estimation” lenses). The h that

maximizes the power over Nh(x0) provides a customized lense for a unit with covariate value x0.

We discuss global alternatives where supx |β(x)| > 0 in Remark 2.3. The many available tests for

this alternative will have increased power if they are based on variable bandwidths.

We will next show that the power of the test is very sensitive to the choice of h and that this

choice at first appears to be inversely related to the usual choice of h based on mean squared error

(MSE). In fact, for any alternative with β(x) nonzero on an interval centered at x0 that does not

shrink to a point as n goes to infinity, the asymptotic power is maximized by selecting an h = hn

that does not converge to zero as n → ∞.

Because β̂h(x0) is asymptotically normal, the asymptotic power of the test based on it for local

Pitman alternatives will be determined by its efficacy (EFF) for one-sided alternatives β(x) > 0

and by its absolute efficacy for two-sided alternatives β(x) 6= 0 (Kendall and Stuart (1961), Section

25.5, Lehmann (1999)):

EFFh ≡ EFF
(
β̂h(x0)

)
= EK

[
β̂h(x0)

]/(
VarH

[
β̂h(x0)

])1/2
.

Consider the alternative µ(x) = α + γ r(x) for a differentiable function r(·). We know (e.g. Fan

and Gijbels (1996), pg. 62) that for h → 0, conditionally on X = (X1, X2, . . . , Xn),

EK

[
β̂h(x0) |X

]
= γr′(x0) + c1h

2 + oP

(
h2

)
and

VarH

[
β̂h(x0) | X

]
= c2n

−1h−3 + oP

(
n−1h−3

)

for appropriate constants c1 and c2. These expressions yield an approximate efficacy of order

n1/2h3/2 which is maximized by h not tending to zero (where the expressions are not valid). This
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shows that h tending to zero does not yield optimal power and that maximizing power is typically

very different from minimizing some variant of mean squared error: for example,

MSE(h) ≡ E
[
(µ̂h(X) − µ(X))2 1{X ∈ (x0 − h, x0 + h)}

]
,

where µ̂h(·) is the local linear estimate of µ(·). This subject has been discussed for global alternatives

by many authors, sometimes with the opposite conclusion. For a discussion, see e.g. Hart (1997),

Zhang (2003b), Zhang (2003a), and Stute and Zhu (2005). In the next section we look more closely

at the optimal h and find that for certain least favorable distributions, the optimal h does indeed

tend to zero.

Remark 1.1: Why the t-test?

(a) The t-test is asymptotically most powerful in the class of tests using data from Dh(x0) for a

class of perturbed normal linear models defined for xi ∈ Nh(x0) by Yi = γ (xi − x0) + γ2r(xi) + ε,

where
∑

(xi − x0) = 0. Here, ε has the distribution Φ(t/σ0) where γ = γn = O(n−1/2) is a Pitman

alternative, h is fixed, and r(·) is a general function satisfying regularity conditions. To establish

the asymptotic power optimality, suppose all parameters are known except γ and consider the Rao

score test for testing H : γ = 0 versus K : γ > 0.

It is easy to see that this statistic is equivalent to
∑

(xi − x0)Yi whose asymptotic power is

the same as that of the t-test. It is known (e.g. Bickel and Doksum (2001), Section 5.4.4) that

the score test is asymptotically most powerful level α. In the presence of nuisance parameters, a

modified Rao score test retains many of its power properties, see Neyman (1959) and Bickel et al.

(2006). The idea of asymptotic optimality for perturbed models is from Bell and Doksum (1966).

The asymptotic power optimality of the t-test is in agreement with the result that when bias does

not matter, the uniform kernel is optimal (e.g. Gasser et al. (1985) and Fan and Gijbels (1996)).

But see Blyth (1993), who shows that for certain models, a kernel asymptotically equivalent to the

derivative of the Epanechnikov kernel maximizes the power asymptotically.

While for alternatives of this type the use of a test based on the t-test is asymptotically most

powerful, there undoubtedly exist other situations in which a test based on an appropriate non-

parametric estimate of µ(·) gives better power. We will explore this issue in future work.

(b) The t-test is the natural model selector for choosing between the models µ(x) = β0 + ε and

µ(x) = β0 + β1x + ε′ in the sense that to minimize mean squared prediction error, we select the

former model if the absolute value of the usual t-statistic is less than
√

2 (see e.g. Linhart and
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Zucchini (1986)). This is easily seen to be equivalent to minimizing the mean squared estimation

error. It also is the rule of choice if we apply the methods of Claeskens and Hjorth (2003) who choose

the model that minimizes the asymptotic mean squared estimation error for Pitman sequences of

alternatives.

Remark 1.2: For a given test statistic T , the numerator of the efficacy is usually (e.g. Lehmann

(1999), pg. 172, and Kendall and Stuart (1961)) defined in terms of the derivative of Eθ(T )

evaluated at the hypothesized parameter value θ0. We consider the “pre-derivative” because we

want to investigate how h influences efficacy.

Remark 1.3: Hajek (1962), Behnen and Hus̄ková (1984), Behnen and Neuhaus (1989), Sen (1996),

among others, proposed and analyzed procedures for selecting the asymptotically optimal linear

rank test by maximizing the estimated efficacy.

Remark 1.4: The approach of selecting bandwidth to maximize efficacy can also be used to test

a parametric model of the form E(Y |X = x) = g(x;β) against a nonparametric model. Simply

begin by subtracting off from Y the appropriate model fit under the (null hypothesis) parametric

model. See Remark 2.9.

2 Maximizing Asymptotic Power

We start with fixed h > 0. Then the limiting power for the two-sided alternative is a one-to-one

function of the absolute value of

τh(x0) ≡ lim
n→∞

n−1/2 EFF
(
β̂h(x0)

)
.

Thus the maximizer of the asymptotic power is h0 ≡ arg maxh |τh(x0)|. Our estimate of h0 is the

maximizer of the absolute t-statistic, ĥ ≡ arg maxh |th(x0)| or its equivalents given in Remark 2.1.

To investigate the limit of the t-statistic, th(x0), for the data Dh(x0) we write it as signal/noise

where

signal ≡ β̂h(x0) = Ĉovh(X,Y )

/
V̂arh(X) and

noise2 ≡ V̂ar
(
β̂h(x0)

)
= Êh

(
ε2
h

)/
nhV̂arh(X) .

Here V̂arh(X) and Ĉovh(X,Y ) denote the sample variance and covariance for the data Dh(x0),

nh ≡
n∑

i=1

1{xi ∈ Nh(x0)} and Êh

(
ε2
h

)
= RSSh

/
(nh − 2) ,
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where RSSh is the residual sum of squares
∑

(yi − µ̂L,h(xi))
2 for the linear fit µ̂L,h(xi) to yi based

on Dh(x0).

For fixed h, as n → ∞,

β̂h(x0)
P−→ βh(x0) ≡ Covh(X,Y ) /Varh(X) ,

(nh/n)
P−→ Ph(x0) ≡ P (X ∈ Nh(x0)) , and

Êh

(
ε2
h

) P−→ Eh

(
ε2
L,h

)
≡ Eh[Y − µL,h(X)]2 ,

where Eh, Varh, and Covh denote expected value, variance, and covariance conditional on X ∈
Nh(x0), and where µL,h(x) = αh + βhX with αh and βh the minimizers of Eh[Y − (α + βX)]2. It

follows that as n → ∞,

n−1/2 th(x0)
P−→ τ∗

h(x0) ≡ βh(x0) {Ph(x0) Varh(X)}1/2

/{
Eh

(
ε2
L,h

)}1/2

=

[
SDH(Y )

/(
Eh

(
ε2
L,h

))1/2
]

τh(x0) . (1)

For sequences of Pitman alternatives where µ(x) = µn(x) converges to a constant for all x as

n → ∞, we assume that as n → ∞

Eh

(
ε2
L,h

)
→ σ2 ≡ VarH(Y ) .

In this case, τ ∗
h(x0) = τ(x0). It is clear that τ ∗

h(x0) → 0 as h → 0 because both Ph(x0) and

Varh(X) tend to zero while Eh(ε2
L,h) does not tend to zero except in the trivial case Y = µL,h(x)

for x ∈ Nh(x0). On the other hand, if the density of X has support [a, b] and x0 ∈ [a, b], then for

h′ ≡ max{x0 − a, b − x0},

lim
h → h′

τ∗
h(x0) = βL

{
Var(X)

/
E

(
ε2
L

)}1/2

,

where εL = Y − (αL + βLX) with αL and βL the minimizers of E[Y − (α + βX)]2, that is,

βL = Cov(X,Y )/Var(X), αL = E(Y ) − βLE(X). Thus, when X has finite support [a, b] and

x0 ∈ [a, b], the maximum of τ ∗
h(x0) over h ∈ [0, h′] exists and it is greater than zero. A similar

argument shows that h = 0 does not maximize τ ∗
h(x0) when X has infinite support.

Remark 2.1: Instead of the t-statistic th(x0), we could use the efficacy estimate

ÊFF
(
β̂h(x0)

)
= rh(x0) ,
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where rh(x0) is the sample correlation for data from Dh(x0). The formula

t2h(x0) = (n − 2) r2
h(x0)

/(
1 − r2

h(x0)
)
,

where the right hand side is increasing in |rh(x0)|, establishes the finite sample equivalence of

|th(x0)| and |rh(x0)|. They are also similar to |ρ(x0)| where

ρ̂h(x0) =
β̂h(x0) ŜD(X)√

β̂2
h(x0) V̂ar(X) + V̂arh(Y )

is the estimate of the correlation curve ρ(·) discussed by Bjerve and Doksum (1993), Doksum et al.

(1994), and Doksum and Froda (2000). Here ρ̂h(x) is a standardized version of rh(x0) which is

calibrated to converge to the correlation coefficient ρ in bivariate normal models.

2.1 Optimal Bandwidth for Vertical Pitman Sequences

If we consider Pitman alternatives of the form Y = α + γr(X) + ε where γ = γn = c/
√

n, c 6= 0,

and |r′(x)| > 0 in a fixed interval containing x0, then

n−1/2EFF
[
β̂h(x0)

]
→ τh(x0) ,

where τh(x0) is as in Equation (1), and the optimal h will be bounded away from zero as before.

Thus, the power optimal bandwidth does not tend to zero for sequences of alternatives where, as

n → ∞, ‖β‖∞ → 0 and ‖β‖−∞ 6→ 0 with ‖β‖∞ ≡ supx |β(x)| and

‖β‖−∞ ≡ x+(β) − x−(β) ≡ sup
x

{x : |β(x)| > 0} − inf
x
{x : |β(x)| > 0} .

We refer to ‖β‖∞ as the “vertical distance” between H and the alternative and ‖β‖−∞ as the

“horizontal discrepancy.”

Next we consider “horizontal” sequences of alternatives where ‖β‖−∞ → 0 and ‖β‖∞ may or

may not tend to zero as n → ∞ and find that now the power optimal bandwidth tends to zero.

2.2 Optimal Bandwidth for Horizontal Pitman Sequences

We now consider Pitman alternatives of the form

Kn : Y = α + γ W

(
X − x0

θ

)
+ ε, (2)

where X and ε are uncorrelated, ε has mean zero and variance σ2, and W (·) has support [−1, 1].

We assume that X is continuous, in which case µ(·) is the constant α with probability one when
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θ = 0. Thus the hypothesis holds with probability one when γθ = 0. We consider models where

θ = θn → 0 as n → ∞, and γ may or may not depend on θ and n. For these alternatives the

neighborhood where |β(x)| > 0 shrinks to achieve a Pitman balanced model where the power

converges to a limit between the level α and 1 as n → ∞. Note, however, that the alternative does

not depend on h. We are in a situation where “nature” picks the neighborhood size θ, and the

statistician picks the bandwidth h. This is in contrast to Blyth (1993) and Ait-Sahalia et al. (2001)

who let the alternative depend on h.

Note that for h > 0 fixed, γ bounded above, and θ → 0,

Covh(X,Y ) = γCovh

(
X,W

(
X − x0

θ

))
→ 0

because W ((X − x0)/θ) tends to zero in probability as θ → 0 and any random variable is uncor-

related with a constant. This heuristic can be verified by the change of variable s = (x − x0)/θ,

x = x0 + θs. More precisely,

Proposition 2.1: Assume that the density f(·) of X has a bounded derivative at x0. If h > 0 is

fixed, then as γθ → 0 in the Model (2),

(a) Covh(X,Y ) = O(γθ);

(b) n−1/2EFF(β̂h(x0)) → 0;

(c) n−1/2th(x0)
P−→ 0.

Proof: Since ε is assumed uncorrelated with X, Covh(X,Y ) = Covh(X,µ(X)) and hence

Covh(X,Y ) = γCovh

(
X,W

(
X − x0

θ

))

= γ

∫ h

−h
(x − Eh(X))W

(
x − x0

θ

)[
f(x)

/
Ph(x0)

]
dx

=
γθ

Ph(x0)

∫ 1

−1
(x0 + sθ − Eh(X))W (s) f(x0 + sθ)ds (3)

=
γθ

Ph(x0)

[
(x0 − Eh(X)) f(x0)

∫ 1

−1
W (s) ds + O(θ)

]
.

Then Result (b) follows because

EK

(
β̂h(x0)

)
→ Covh(X,Y )

/
Varh(X)

and the other factors in EFFh are fixed as θ → 0. Similarly (c) follows from Equation (1). �

Proposition 2.1 shows that for model (2), fixed h leads to small |EFFh|. Thus we turn to the

h → 0 case. If h > θ then observations (X,Y ) with X outside [x0 − θ, x0 + θ] do not contribute to
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the estimation of βh(x0). Thus choosing a smaller h may be better even though a smaller h leads

to a larger variance for β̂h(x0). This heuristic is made precise in the next result which provides

conditions where h = θ is the optimal choice among h satisfying h ≥ θ.

Define

mj(W ) ≡
∫ 1

−1
sjW (s) ds j = 0, 1, 2.

Theorem 2.1: Assume that the density f(·) of X has a bounded, continuous second derivative at

x0 and that f(x0) > 0. Then, in model (2), as θ → 0 and h → 0 with h ≥ θ, the following are true.

(a) Covh(X,Y ) =
γθ

2hf(x0)

{
−1

3
m0(W ) f ′(x0)h2

+ f(x0) m1(W ) θ + f ′(x0)m2(W ) θ2 + o
(
h2

)
+ o

(
θ2

)}
.

(b) If m1(W ) 6= 0 and m2(W ) 6= 0,

τh,θ(x0) ≡ lim
n→∞

n−1/2 EFF
(
β̂h(x0)

)

= σ−1γθh−3/2 [f(x0)]
−1/2

{
−1

3
m0(W ) f ′(x0) h2

+ f(x0)m1(W ) θ + f ′(x0)m2(W ) θ2 + o
(
h2

)
+ o

(
θ2

)}
(4)

= O
(
σ−1γθ2h−3/2

)

and |τh,θ(x0)| is maximized subject to h ≥ θ by h = θ.

(c) If m1(W ) = 0,

lim
n→∞

n−1/2 EFF
(
β̂h(x0)

)
= O

(
σ−1γθ3h−3/2

)

and |τh,θ(x0)| is maximized subject to h ≥ θ by h = θ.

Proof:

Part (a): This is Lemma 4.3, part (e).

Part (b):

lim
n→∞

n−1/2 EFFh = σ−1Covh(X,Y )

[
(Ph(x0))

/
Varh(X)

]1/2

.

By Lemma 4.3, part (d), we get

Ph(x0) /Varh(X) = 6f(x0) h−1 + O(1) .

Equation (4) follows from this and part (a). Thus we can write

lim
n→∞

n−1/2 EFFh � σ−1
[
c1γθh1/2 + c2γθ2h−3/2 + c3γθ3h−3/2

]
(5)
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for appropriate constants c1, c2, and c3 given in part (b). The square of the expression on the right

of Equation (5) is dominated by [σ−1θ2h−3/2c2]
2 and maximized for h ≥ θ by h = θ.

Part (c): Apply the argument in Part (b). �

It remains to investigate the case where h ≤ θ. We next show that the optimal h cannot be

such that h/θ → 0.

Proposition 2.2: Assume the conditions of Theorem 2.1 and that W ′′(·) exists and is bounded in

a neighborhood of zero. Then, as h/θ → 0,

lim
n→∞

n−1/2 EFFh =





o
(
σ−1γθ2h−3/2

)
, if W ′(0) 6= 0

o
(
σ−1γθ3h−3/2

)
, if W ′(0) = 0

.

Proof: Set a ≡ h/θ and define

mj,a(W ) ≡
∫ a

−a
sjW (s) ds, j = 0, 1, 2.

Equation (4) in Theorem 2.1, part (b), with mj(W ) replaced by mj,a(W ) is valid. A Taylor

expansion gives

m1,a(W ) =
[
2W ′(0) + aW ′′(0)

]
a3 + o(a3).

The result follows for the W ′(0) 6= 0 case. The other case is similar. �

The case where for the smallest optimal h, h/θ → a0 as θ → 0 with a0 ∈ (0, 1) remains. It is

possible that the optimal h satisfies this condition, for instance if W (·) is steep on [−1/2, 1/2] and

nearly constant otherwise. In this case Theorem 2.1 holds with mj(W ) replaced by mj,a(W ).

The concept of efficacy is useful when limn→∞ EFFh is finite because then the limiting power is

between the level α and one. From Equation (5) we see that when h = θ and m1(W ) 6= 0 this is the

case when γθ1/2σ−1 = cn−1/2 for some c > 0. We obtain the following corollary which follows by

extending Theorem 2.1 to sequences of γθ1/2/σ. For extensions to uniform convergence for curve

estimates see Einmahl and Mason (2005).

Corollary 2.1: Assume model (2) and the conditions of Theorem 2.1 and Proposition 2.2.

(a) Suppose that m1,b(W ) 6= 0 for some b in (0, 1]. Then there exists a0 ∈ (0, 1] such that the

smallest h that maximizes

lim
n→∞

n−1/2 EFF
(
β̂h(x0)

)
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satisfies h/θ → a0 for θ → 0. Moreover, m1,a0
(W ) 6= 0, and if γθ1/2/σ = cn−1/2, then

sup
h

[
lim

n→∞
EFFh

]
=

√
(3/2) f(x0)m1,a0

(W ) a
−3/2
0 c + o

(
γθ1/2/σ

)
.

(b) The smallest optimal h in part (a) equals θ if and only if a−3/2m1,a(W ) is maximized subject

to a ≤ 1 by a = 1.

(c) If m1,b(W ) = 0 for all b ∈ (0, 1], that is W (·) is symmetric about zero, and if m2,b(W ) 6= 0 for

some b ∈ (0, 1], then there exists a0 ∈ (0, 1] such that the smallest h that maximizes

lim
n→∞

n−1/2 EFF
(
β̂h(x0)

)

satisfies h/θ → a0 for θ → 0. Moreover m2,a0
(W ) 6= 0, and if (γθ3/2/σ) = cn−1/2, then

sup
h

[
lim

n→∞
EFFh

]
=

√
3/2 [f(x0)]

−1/2 f ′(x0) {m2,a0
(W )

− m0,a0
(W ) /3} a

1/2
0 c + o

(
γθ3/2/σ

)
.

Remark 2.2: Doksum (1966) considered minimax linear rank tests for models where Y
L
= X+V (X)

with V (X) ≥ 0 and ‖FY − FX‖∞ ≥ θ and found that the least favorable distribution for testing

H : V (·) = 0 has Y = X + V0(X) with X uniform(0, 1) and V0(x) = [a + θ − x]+ 1 {x ≥ ξ}, with

ξ ∈ [0, 1− θ]. He considered horizontal Pitman alternatives with ‖V0‖−∞ = θ → 0 as n → ∞. Fan

(1992), Fan (1993), and Fan and Gijbels (1996) considered minimax kernel estimates for models

where Y = µ(X) + ε and found that the least favorable distribution for estimation of µ(x0) using

asymptotic mean squared error has Y = µ0(X) + ε with

µ0(x) =
1

2
b2
n

[
1 − c

(
x − x0

bn

)2
]

+

where bn = c0n
−1/5, for some positive constants c and c0. Again, ‖µ0‖−∞ → 0 as n → ∞. Similar

results were obtained for the white noise model by Donoho and Liu (1991a,b). Lepski and Spokoiny

(1999), building on Ingster (1982), considered minimax testing using kernel estimates of µ(x) and

a model with normal errors ε and Var(ε) → 0 as n → ∞. Their least favorable distributions (page

345) are random linear combinations of functions of the form

µj(x) =

(
h1/2

∫
W 2(t) dt

)−1

W

(
x − tj

h

)
,

which seems to indicate a model that depends on h. Here each µj(x) has ‖µj‖−∞ → 0 as n → ∞.
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Remark 2.3: Global Alternatives. The idea of selecting h by maximizing the estimated efficacy

of the t-statistic extends to global alternatives where the alternative is ‖µ(·) − µY ‖∞ > 0 or

‖β‖∞ > 0. Efficacies can be built from test statistics in the literature such as those based on ratios

of residual sums of squares for the two models under consideration or on

n∑

i=1

[µ̂2,h(Xi) − µ̂1,h(Xi)]
2 V (Xi) ,

where µ̂2,h(·) and µ̂1,h(·) and estimates of µ(·) for two models and V (·) is a weight function (e.g.

Azzalini et al. (1989), Raz (1990), Doksum and Samarov (1995), Hart (1997), Ait-Sahalia et al.

(2001), Fan et al. (2001), Zhang (2003a)).

Note that varying bandwidths can also be used for these types of situations. In the case of

n∑

i=1

[µ̂2,h(Xi) − µ1,h(Xi)]
2 V (Xi) ,

we could think of

Th(x0) = [µ̂2,h(x0) − µ̂1,h(x0)]V
1/2(x0)

as a local test statistic and select h to maximize its squared efficacy. For instance, for testing

β(x) = 0 versus ‖β‖∞ > 0 using µ̂1,h(Xi) = Ȳ and µ̂2,h(X) a locally linear kernel estimate, the

efficacy of Th(x0) with V (·) = 1 will be approximately the same as the efficacy we obtained from

β̂h(x0). Let h(x0) denote the maximizer of the squared efficacy of Th(x0) and set hi = h(Xi). Then

the final test statistic would be

n∑

i=1

[
µ̂2,hi

(Xi) − Ȳ
]2

V (Xi) .

Fan et al. (2001) and Zhang (2003a) proposed a “multiscale” approach to the varying coefficient

model where they select h by maximizing a standardized version of the generalized likelihood ratio

(GLR) statistic which is defined as the logarithm of the ratio of the residual sums of squares for the

two models under consideration. The standardization consists of subtracting the null hypothesis

asymptotic mean and dividing by the null hypothesis asymptotic standard deviation. That is,

for situations where the degrees of freedom of the asymptotic chi-square distribution of the GLR

statistic tends to infinity they are maximizing the efficacy of the GLR statistic.

Other extensions would be to select h to maximize

Th,λ(x0) =

g∑

j=1

t2h,λ(x0j)

/
g or

11



T ∗
h,λ(x0) =

g∑

i=1

β̂ 2
h,λ(x0i)

/
SE




g∑

j=1

β̂ 2
h,λ(x0j)




where x0 ≡ (x01, x02, . . . , x0g)
T is a vector of grid points. Finally, we could select h by, for some

weight function v(·), maximizing the integrated efficacy IEFF ≡
∫

EFF(x) v(x) dx.

Remark 2.4: Hall and Heckman (2000) used the maximum of local t-statistics to test the global

hypothesis that µ(·) is monotone. Their estimated local regression slope is the least squares estimate

based on k nearest neighbors and the maximum is over all intervals with k at least 2 and at most

m. They established unbiasedness and consistency of their test rule under certain conditions.

Remark 2.5: Hall and Hart (1990) found that for a nonparametric two sample problem with

null hypothesis of the form H0 : µ1(x) = µ2(x) for all x, a test statistic which is a scaled version

of n−1
∑

[µ̂2h(Xi) − µ̂1h(Xi)]
2 has good power properties when the bandwidths in µ̂jh(x), j = 1, 2

satisfy h/n → p > 0 as n → ∞ provided

s(µ1, µ2) ≡
∫ 1

0

{∫ t+p

t
[µ2(x) − µ1(x)] f(x) dx

}2

dt > 0

when f(x) has support (0, 1). Note that the asymptotic behavior of n1/2s1/2(µ1, µ2) for sequences

of Pitman alternatives depends completely on whether the length of the set on which [µ2(x)−µ1(x)]

differs from zero tends to zero as n → ∞, just as in our case, where the limiting behavior of the

scaled efficacy depends on whether the length of {x : |β(x)| > 0} tends to zero.

Remark 2.6: Godtliebsen et al. (2004) consider two-dimensional X and use the sum of two squared

local directional t-statistics. We study optimal bandwidths for this case in a subsequent paper.

2.3 Asymmetric Windows

Section 2.2 shows that the limiting power depends crucially on m1(W ) and on m1,a(W ). If these are

zero, the limiting efficacy is of smaller order than if they are not. A simple method for increasing

the limiting power is to use locally linear methods over asymmetric windows of the form

Nh,λ(x0) ≡ [x0 − (1 − λ) h, x0 + (1 + λ) h] , h > 0, −1 ≤ λ ≤ 1.

Now the test statistic is the slope β̂h,λ(x0) of the least squares line for the data Dh,λ(x0) ≡
{(xi, yi) : xi ∈ Nh,λ(x0)}. The efficacy EFFh,λ will be computed conditionally on X ∈ Nh,λ(x0)

and in model (2) with h/θ = a ∈ (0, 2] the expansion of Covh,λ(X,Y ) will be in terms of the

12



integrals

mj,a,λ(x0) ≡





∫ (1+λ)a
−(1−λ)a sjW (s) ds, if (1 + λ) a ≤ 1, (1 − λ) a ≤ 1 (6)

∫ 1
−(1−λ)a sjW (s) ds, if (1 + λ) a > 1, (1 − λ) a ≤ 1 (7)

∫ (1+λ)a
−1 sjW (s) ds, if (1 + λ) a ≤ 1, (1 − λ) a > 1 (8)

If W (·) is symmetric, the term of order (γθ2/σ)h−3/2 in Equation (5) will not vanish and we will

maintain high test efficiency. Even if W (·) is not symmetric, absolute efficacy is always increased

because

sup
h,λ

|EFFh,λ| ≥ sup
h

|EFFh,0|.

Note that with asymmetric windows we need h ≥ 2θ to make sure the intervals Nh,λ(x0) cover the

support of W (·).

Theorem 2.2: Assume that the density f(·) of X has a bounded, continuous second derivative at

x0 and that f(x0) > 0. Also assume that we can find λ ∈ [0, 1] such that mj,0,λ(W ) 6= 0 for either

j = 0 or j = 1. Then, in model (2), as θ → 0 and h → 0 with h ≥ 2θ, the following are true.

(a) Covh,λ(X,Y ) =
γθ

2h
{m1,a,λ(W ) θ − m0,a,λ(W )λh+o(h) + o(θ)} .

(b) τh,θ,λ(x0) ≡ lim
n→∞

n−1/2 EFF
(
β̂h,λ(x0)

)
=

√
3/2σ−1γθh−3/2 [f(x0)]

1/2

× {m1,a,λ(W ) θ − m0,a,λ(W )λh + o(θ) + o(h)}

and |τh,θ(x0)| is maximized subject to h ≥ 2θ by h = 2θ.

Proof: Part (a): In Lemma 4.5, part (b), we show that

Ph,λ(x0) = 2f(x0)h + 2f ′(x0)λh2 + o
(
h2

)
and

Eh,λ(X) = x0 + λh +
[
f ′(x0) /f(x0)

]
h2/3 + o

(
h2

)
.

Other terms are from Equation (3) with ranges of integration in Equations (6), (7), and (8), rather

than from -1 to 1; and the proof of Lemma 4.3, part (e).

Part (b):

lim
n→∞

n−1/2 EFFh = σ−1Covh,λ(X,Y )

[
(Ph,λ(x0))

/
Varh,λ(X)

]1/2

.

By Lemma 4.5, part (d), we get

Ph,λ(x0) /Varh,λ(X) = 6f(x0) h−1 + O(1) .

13



Equation (4) follows from this and part (a). �

Corollary 2.2: Under the conditions of Theorem 2.2, for the model (2), and θ → 0, then, if

γθ1/2/σ = cn−1/2,

sup
h≥2θ

[
lim

n→∞
EFFh

]
=

√
3/2 [f(x0)]

1/2 [m1,a,λ(W ) − 2m0,a,λ(W )λ] c + o(θ) .

The optimal h cannot be such that h/θ → 0.

Proposition 2.3: Assume the conditions of Theorem 2.2 with λ ∈ (0, 1) and that W ′′(·) exists

and is bounded in a neighborhood of zero. Then, as h/θ → 0,

lim
n→∞

n−1/2 EFF
(
β̂h(x0)

)
= o

(
σ−1γθh−3/2 {m1,a,λ(W ) θ − m0,a,λ(W )λh}

)
.

Proof: The proof is similar to the proof of Proposition 2.2. �

Corollary 2.3: Assume model (2) and the conditions of Theorem 2.2 and Proposition 2.3. Then

there exists a0 ∈ (0, 2] such that the smallest h that maximizes

lim
n→∞

n−1/2 EFFh,λ

(
β̂h,λ(x0)

)

satisfies h/θ → a0 for θ → 0. Moreover, if γθ1/2/σ = cn−1/2, then

sup
h

[
lim

n→∞
EFFh,λ

]
=

√
(3/2) f(x0) [m1,a0,λ(W ) − m0,a0,λ(W ) a0λ]

× a
−3/2
0 c + o

(
γθ1/2/σ

)
.

Remark 2.7: Computations

We select h and λ to maximize the absolute t-statistic |th,λ(x0)| computed for the data from

Dh,λ(x0). This is not a challenge computationally since this is a search for the largest absolute

t-statistic over all possible intervals that include x0. We approximate this search by using all order

statistic intervals of the form (x(i), x(j)) that contain x0 and at least k points from {x1, x2, . . . , xn}
where k ≈ 0.05n is a good choice.

Remark 2.8: Critical Values

Under the hypothesis that X and Y are independent, we get a distribution free critical value

by using the permutation distribution of the maximum absolute t-statistic obtained by maximizing

t-statistics over local neighborhoods. By permuting (Y1, Y2, . . . , Yn), leaving (X1, X2, . . . , Xn) fixed

14
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Figure 1: Approximate distribution of maximum absolute t-statistic under the null hypothesis,

when using symmetric neighborhoods (dashed) and asymmetric neighborhoods (solid).

and computing the maximum t-statistic for these permuted data (Xi, Yi), 1 ≤ i ≤ n, we get n!

equally likely (under H) values of the maximum absolute t-statistic. A subset of the n! permutations

are chosen at random to reduce computational complexity. The dashed histogram in Figure 1

shows the approximated distribution using neighborhoods centered at x0. We use 1000 random

permutations. For each permutation of the data set, a set of ten bandwidths are used, ranging from

the smallest which will ensure at least 20 data points in the neighborhood up to a bandwidth which

selects all available data. The solid histogram in Figure 1 shows the approximated distribution using

asymmetric neighborhoods which include x0. The set of candidate endpoints of the neighborhoods

are the quantiles x̂α = F̂−1(α) of the observed X variable, with α uniformly spaced from zero up to

one. These lead to 45 total neighborhoods, not all of which will include x0. Since it searches over a

larger class of neighborhoods, it is not surprising that the simulated distribution using asymmetric

neighborhoods has a somewhat larger right tail than that for symmetric intervals.
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Remark 2.9: Testing a Parametric Hypothesis

Suppose that we want to test a linear model against the alternative that near x0 a nonlinear

model leads to a larger signal to noise ratio. Thus, near x0, a local t-statistic may be significant

when the global t-statistic is not, or visa versa. If we introduce Y ′
i ≡ Yi − (α̂ + β̂Xi) where α̂ + β̂x

is the global least squares fit, and if we have in mind horizontal alternatives where the optimal h

tends to zero, the previous results apply because (α̂−α) and (β̂−β) will converge to zero at a faster

rate than (β̂h(x0) − βh(x0)) and thus testing a linear model for Yi is asymptotically equivalent to

testing that E(Y ′|X = x) is constant. More generally, we may want to test a parametric model of

the form E(Y |X = x) = g(x;β) against the alternative that we get higher power near x0 by using

a nonparametric model. If we set Y ′ = Yi − g(x; β̂) for suitable
√

n consistent β̂ and smooth g(·),
the remark about the linear hypothesis still applies.

3 Examples

This section illustrates the behavior of the bandwidth selection procedure based on maximizing

absolute efficacy, and compare it with methods based on MSE, using simulated and real (currency

exchange) data sets. We utilize the model

µν(x) = νx + exp
(
−40 (x − 0.5)2

)
, 0 ≤ x ≤ 1,

and focus on the “flat bump” (ν = 0) and “sloped bump” (ν = 1.25) models shown in Figure

2. Assume X1, X2, . . . , Xn are uniform on (0, 1), and that Yi − µ(Xi) is normal with mean zero

and variance σ2. Given a sample of data, MSE will be approximated using leave-one-out cross

validation.

3.1 Symmetric Windows

The left plot in Figure 3 shows both theoretical MSE(h) and limiting efficacy (|τh(x0)|) for a range

of h in the sloped bump model, with x0 = 0.6, n = 1000, and σ2 = 0.05. The mean squared error is

minimized by choosing h = 0.07, while |τh(x0)| is maximized when h = 0.6. This discrepancy is to

be expected: Bias of the local linear model estimator for µ(x) is a critical component of the mean

squared error, and the linear fit clearly becomes quickly inappropriate for x outside of the range

[0.53, 0.67]. Alternatively, imagine one were to ask: “What interval centered at 0.6 would give

the best chance of rejecting the hypothesis that µ(x) is constant?” For sufficiently large σ2, the
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Figure 2: The “sloped bump” (solid) and “flat bump” (dashed) models.

procedure tells us to use the entire range of data for the most power to reject the hypothesis that

µ(·) is constant. Here, bias is not at issue, we are instead searching for prevalent linear features in

the bivariate relationship. There is a large drop in power if we use the MSE optimal h rather than

the power optimal bandwidth.

There is, however, a local maximum in the left plot near h = 0.18. Switching to the flat bump

model, we see that the chosen bandwidth is indeed h ≈ 0.18; see the right plot of Figure 3. The

point is the following: When the overall linear trend is present and σ2 = 0.05, the local downslope

of the bump was not a sufficiently significant feature relative to the overall slope. Once σ2 < 0.008,

the power optimal bandwidth is chosen small. This illustrates the different behavior for “vertical”

and “horizontal” alternatives.

The optimal bandwidth as chosen to maximize |τh(x0)| does not depend on n, but it does depend

on σ2. This is appropriate given σ2 is a feature of the bivariate distribution of X and Y , while n is

not. Using the flat bump model, Figure 4 shows how the theoretically optimal bandwidth chosen

by both minimizing MSE and maximizing |τh(x0)| varies with sample size, and Figure 5 shows the

same as σ2 varies. Note that as σ2 increases, the power optimal bandwidth also grows. Figures
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Figure 3: Plot of MSE (solid) and |τh(x0)| (dashed) for x0 = 0.6, n = 1000, and σ2 = 0.05 when

using the sloped bump model (left plot) and the flat bump model (right plot).

4 and 5 also depict the bandwidth selection procedures on simulated data sets. A pair of dots

connected by a vertical dotted line give the bandwidth selected by minimizing the leave-one-out

cross validation (filled circle) and by maximizing the absolute t-statistic (|th(x0)|) (open circle),

using the same simulated data set.

3.2 Asymmetric Windows

We now construct the optimal asymmetric windows, as first mentioned in Remark 2.7. Adjacent

points along the x axis will often “share” the same optimal neighborhood. Figure 6 shows the

result of maximizing |th,λ(x0)| for each value of x0. For this case, we use the sloped bump model

with n = 1000 and σ2 = 0.05. For any chosen x0, one can read up to find the neighborhood for

that x0 by finding black horizontal line segment which intersects that vertical slice. Once the black

segment is found, however, note that the corresponding neighborhood is in fact the entire length

of the line segment, both the black and gray portions. For example, if x0 = 0.75, the power optimal

neighborhood extends from zero up to approximately 0.88. Figure 7 depicts the neighborhoods

chosen in the same way, except now based on maximizing the absolute t-statistic when using a
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Figure 4: Plot of bandwidth found by minimizing theoretical MSE (solid) and maximizing theo-

retical |τh(x0)| (dashed) for x0 = 0.6 and σ2 = 0.05 when using the flat bump model. The dots

represent the chosen bandwidth based on maximizing the absolute t-statistic (open) and minimizing

the leave-one-out cross validation MSE (filled) using a randomly generated data set of the given

size.
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Figure 5: Plot of bandwidth found by minimizing theoretical MSE (solid) and maximizing theo-

retical |τh(x0)| (dashed) for x0 = 0.6 and n = 1000 when using the flat bump model. The dots

represent the chosen bandwidth based on maximizing the absolute t-statistic (open) and minimizing

the leave-one-out cross validation MSE (filled) using a randomly generated data set of the given

error variance (σ2).

20



x

0.00 0.25 0.50 0.75 1.00

0
0.

25
0.

5
0.

75
1

0
0.

41
0.

82
1.

23
1.

65
τ h

λ(x
)

µ(
x)

Figure 6: Plot of bandwidth chosen by maximizing |τh,λ(x0)| for all x0, for the case n = 1000, and

σ2 = 0.05 when using the sloped bump model.

simulated data set of size n = 1000.

3.3 Application to Currency Exchange Data

Figure 8 shows the results of this approach applied to daily Japanese Yen to Dollar currency

exchange rate data for the period January 1, 1992 to April 16, 1995. The variable along the X axis

is the standardized return, i.e. the logarithm the ratio of today’s exchange rate to the yesterday’s

rate, standardized to have mean zero and variance one. The response variable is the logarithm

of the volume of currency exchange for that day. Figure 9 displays, as the solid line, the values

of µ̂h,λ(x0) for all values of x0, when the bandwidth is chosen by maximizing |th,λ(x0)|. The plot

also shows, as a dashed line, an estimate of formed using local linear regression with tri-cube
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Figure 7: Plot of bandwidth chosen by maximizing the absolute t-statistic for all x0, using one

simulated data set, for the case n = 1000, and σ2 = 0.05 when using the sloped bump model.

22



weighting function (the loess() function implemented in R). The smoothing parameter, called

span, is chosen by minimizing the generalized cross validation; the chosen value of 0.96 means that

the local neighborhood is chosen sufficiently large to include 96% of the data.

Figure 10 shows the estimated correlation curve, ρ̂h,λ(·), as described in Remark 2.1. Again, the

windows required for the local slope and variance estimates are chosen to maximize the absolute

t-statistics.

This problem is well-suited to our approach. We seek those features of the bivariate relationship

which these data have the most power to reveal. In Figures 8 and 10, we observe that there are

two major features, one representing when there is a decrease in the exchange rate relative to the

previous day (return less than one), and another feature representing when there is an increase in

the exchange rate relative to the previous day. This finding is consistent with the discussion in

Karpoff (1987), who cites several studies which show a positive correlation between absolute return

and volume.

4 Appendix

Lemma 4.1: Let A(x) ≡
∫ x
−∞

g(t) dt for some integrable function g(·). If g ′′(·) is bounded and

continuous in a neighborhood of x, then

A(x + h) − A(x − h) = 2A′(x) h + A′′′(x) h3/3 + o
(
h3

)
(9)

= 2g(x) h + g′′(x)h3/3 + o
(
h3

)
.

Proof:

A(x0 ± h) = A(x0) + A′(x0) (±h) + A′′(x0) h2/2 + A′′′(x0)
(
±h3

)
/6 + o

(
h3

)
. �

Lemma 4.2: For constants c1, c2, c3, and c4 with c1 6= 0,

(a)
(
c1 + c2h

2
)−1

= c−1
1 −c2c

−2
1 h2+o

(
h2

)
and

(b)
(
c1 + c2h

2
)−1 (

c3 + c4h
2
)

= c−1
1

(
c3 + c4h

2
)
−c2c3c

−2
1 h2+o

(
h2

)
.

Proof: For part (a), Taylor expand g(t) = (c1 + c2t)
−1 around t = 0. Part (b) follows directly

from (a). �

Lemma 4.3: If f ′′(·) is continuous and bounded in a neighborhood of x0, then

(a) Ph(x0) = 2f(x0) h+f ′′(x0) h3/3+o
(
h3

)
,
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Figure 8: Results of analysis of Japanese Yen to Dollar exchange rates. Plot shows bandwidths

chosen by maximizing the absolute t-statistics for all x0.
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Figure 9: Results of analysis of Japanese Yen to Dollar exchange rates. Plot shows µ̂h,λ(x) for

various values of x for both bandwidth selected by maximizing the absolute t-statistics (solid),

compared with fit using the R function loess() with smoothing parameter span = 0.96 (dashed).
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in Remark 2.1.

26



(b) Eh(X) = x0+
[
f ′(x0) /f(x0)

]
h2/3+o

(
h2

)
,

(c) Varh(X) = h2/3+o
(
h2

)
,

(d) [Ph(x0) /Varh(X)] = 6f(x0) h−1+O(1) , and

(e) Covh(X,Y ) =
γθ

2hf(x0)

{
−1

3
m0(W ) f ′(x0)h2 + O

(
θh2

)

+ f(x0) m1(W ) θ + f ′(x0)m2(W ) θ2 + o
(
h2

)
+ o

(
θ2

)}
.

Proof:

Part (a): Use Equation (9) with g(·) = f(·).
Part (b): Set Z ≡ X−x0, then Eh(X) = x0 +Eh(Z) with fZ(z) = f(z+x0). Write f0(z) = fZ(z),

then

Ph(x0) Eh(Z) =

∫ h

−h
zf0(z) dz = A(h) − A(−h) .

Now Equation (9) with g(z) = zf0(z), g(0) = 0, g′′(0) = 2f ′(x0) implies that

Eh(Z) =
[
2f ′(x0) h3/3 + o

(
h3

)]/
Ph(x0) =

(
f ′(x0) /f(x0)

)
h2/3 + o

(
h2

)

by Lemma 4.2. The result follows.

Part (c): Set Z ≡ X − x0, then Var(X|Nh(x0)) = Var(Z|Nh(0)) and fZ(0) = f(x0). Write f0(z)

for fZ(z). We have

Eh

(
Z2

)
= E

(
Z2|Nh(x0)

)
=

1

Ph(x0)

∫ h

−h
z2f0(z) dz =

[A(h) − A(−h)]

Ph(x0)
.

Now use Lemma 4.1 with g(z) = z2f0(z). We have g(0) = g′(0) = 0, g′′(0) = 2f0(0) = 2f(x0),

Eh

(
Z2

)
=

2f(x0) h2/3

2f(x0) + f ′′(x0) h2/3
= h2/3 + o

(
h2

)
,

Varh(Z) = Eh

(
Z2

)
− [Eh(Z)]2 = h2/3 + o

(
h2

)
.

Part (d):

[Ph(x0) /Varh(X)] =
2f(x0)h + f ′′(x0) h3/3 + o

(
h3

)

h2/3 + o(h2)
= 6f(x0) h−1 + O(1) .
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Part (e): Begin with the expression for Covh(X,Y ) given in Equation (3) and substitute in Ph(x0)

and Eh(X) given in parts (a) and (b) of this lemma. This gives the following:

Covh(X,Y ) = γθ
(
2f(x0) h + f ′′(x0)h3/3 + o

(
h3

))−1

×
[∫ 1

−1
sθW (s) f(x0 + sθ)ds

−
∫ 1

−1

f ′(x0)

f(x0)

h2

3
W (s) f(x0 + sθ)ds + o

(
h2

)]
.

Then using the Taylor expansion of f(·) around x0 we see that

∫ 1

−1
sθW (s) f(x0 + sθ)ds = f(x0) θm1(W ) + f ′(x0) θ2m2(W ) + o

(
θ2

)
and

∫ 1

−1

f ′(x0)

f(x0)

h2

3
W (s) f(x0 + s) ds = m0(W ) f ′(x0)h2/3 + o

(
h2

)
+ o

(
θ2

)

where the terms of this second equation which contain h2θ or h2θ2 are o(h2) since we are considering

behavior under both θ and h going to zero. Combining, we see that

Covh(X,Y ) =
(
2f(x0)h + o

(
h2

))−1

×
(
f(x0) θm1(W ) + f ′(x0)m2(W ) θ2

− m0(W ) f ′(x0)h2/3 + o
(
h2

)
+ o

(
θ2

))
,

and the result follows immediately. �

Lemma 4.4: Let A(x) ≡
∫ x
−∞

g(t) dt for some integrable function g(·). Then

D ≡ A(x + (1 + λ)h) − A(x − (1 − λ)h)

= 2A′(x)h + 2A′′(x) λh2 + A′′′(x)
(
1 + 3λ2

)
h3/3 + o

(
h3

)

= 2g(x)h + 2g′(x)λh2 + g′′(x)
(
1 + 3λ2

)
h3/3 + o

(
h3

)

provided g′′(·) is bounded and continuous in a neighborhood of x.

Proof:

A(x + (1 + λ)h) = A(x) + A′(x) (1 + λ)h + A′′(x) (1 + λ)2 h2/2

+ A′′′(x) (1 + λ)3 h3/6 + o
(
h3

)
.

A(x − (1 − λ)h) = A(x) − A′(x) (1 − λ)h + A′′(x) (1 − λ)2 h2/2

− A′′′(x) (1 − λ)3 h3/6 + o
(
h3

)
. �
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Lemma 4.5: If f ′′(·) is continuous and bounded in a neighborhood of x0, then

(a) Ph,λ(x0) = 2f(x0)h+2f ′(x0) λh2+o
(
h2

)
,

(b) Eh,λ(X) = x0+λh+
[
f ′(x0) /f(x0)

]
h2/3+o

(
h2

)
,

(c) Varh,λ(X) = h2/3+o
(
h2

)
, and

(d) [Ph,λ(x0) /Varh,λ(X)] = 6f(x0)h−1+O(1) .

Proof:

Part (a): Use Lemma 4.4 with g(·) = f(·).
Part (b): Again set Z ≡ X − x0, then

Eh,λ(Z) =
(
2f(x0) λh2 + 2f ′(x0)/3

(
1 + 3λ2

)
h3 + o

(
h3

))/
(Ph,λ(x0))

=
2f(x0) λh + 2f ′(x0)

(
1 + 3λ2

)
h2/3 + o

(
h2

)

2f(x0) + 2f ′(x0)λh + o(h)

= λh +
[
f ′(x0) /f(x0)

] (
1 + 3λ2

)
h2/3 −

[
f ′(x0) /f(x0)

]
λ2h2

= λh +
[
f ′(x0) /f(x0)

]
h2/3 + o

(
h2

)
.

Part (c):
Eh,λ

(
Z2

)
=

1

Ph,λ(x0)

[
2f(x0)

(
1 + 3λ2

)
h3/3

]

=
(
1 + 3λ2

)
h2/3 = h2/3 + λ2h2 + o

(
h2

)
.

Varh,λ(Z) = h2/3 + λ2h2 − λ2h2 + o
(
h2

)
= h2/3 + o

(
h2

)
.

Part (d):

Ph,λ(x0)

Varh,λ(X)
=

2f(x0)h + 2f ′(x0) λh2 + o
(
h2

)

h2/3 + o(h2)
= 6f(x0)h−1 + O(1) . �
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