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Abstract

We present a Monte Carlo method for approximating the minimax expected size (MES)

confidence set for a parameter known to lie in a compact set. The algorithm is motivated by

problems in the physical sciences in which parameters are unknown physical constants related

to the distribution of observable phenomena through complex numerical models. The method

repeatedly draws parameters at random from the parameter space and simulates data as if each

of those values were the true value of the parameter. Each set of simulated data is compared

to the observed data using a likelihood ratio test. Inverting the likelihood ratio test minimizes

the probability of including false values in the confidence region, which in turn minimizes the

expected size of the confidence region. We prove that as the size of the simulations grows,

this Monte Carlo confidence set estimator converges to the Γ-minimax procedure, where Γ is

a polytope of priors. Fortran-90 implementations of the algorithm for both serial and parallel

computers are available. We apply the method to an inference problem in cosmology.
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1 Introduction

The relationship between hypothesis tests and confidence estimators can be exploited

to construct confidence sets with desirable properties. For a fixed confidence level,

it is natural to seek a confidence set that is as small as possible. Evans, Hansen,

and Stark (2005) (hereafter, EHS) show that the 1 − α confidence set with smallest

maximum expected measure can be found by inverting a family of level α tests of

simple null hypotheses against a common simple alternative hypothesis. This is the

minimax expected size (MES) procedure. This paper gives a computationally efficient

algorithm for approximating MES and other optimal confidence sets, including the

less conservative minimax regret (MR) procedure, when the parameter—which can

be multidimensional—is known to lie in a compact set.

The method is well suited to scientific problems in which the parameter satisfies a

priori bounds and the distribution of the observed data depends on the parameter in

a complex way—e.g., through a numerical model. For example, there are theoretical

and observational constraints on cosmological parameters such as Hubble’s constant

and the age of the Universe. Those parameters in turn affect the distribution of

angular fluctuations in the cosmic microwave background radiation (CMB). The con-

straints can be combined with observations of the CMB to sharpen inferences about

the power spectrum of angular fluctuations. Below we illustrate the method on a

simpler, but similar, problem: estimating cosmological parameters using observations

of Type Ia supernovae.

There have been several studies of loss functions for set estimators. Cohen and

Strawderman (1973b) consider loss functions that are linear combinations of size of

the region and an indicator of whether the region covers the truth. Aitchison (1966),

Aitchison and Dunsmore (1968) and Winkler (1972) consider interval estimates of

real-valued parameters using a loss function that combines distance from the truth
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to the lower endpoint of the interval, distance from the truth to the upper endpoint,

and the length of the interval. Casella and Hwang (1991) and Casella et al. (1994)

study confidence sets that are optimal with respect to such loss functions.

Here, we restrict attention to confidence sets with 1 − α coverage probability and

use a loss function that depends only on size. EHS, Hwang and Casella (1982) and

Joshi (1969) use the measure ν of the confidence set as loss. The expected ν-measure

of the confidence set is the “expected size.” The MES procedure minimizes the

maximum expected size of the confidence set. Instead of using a single measure ν,

Hooper (1982) and Cohen and Strawderman (1973a) allow the measure to vary with

the true value θ of the parameter. The theory presented here can be extended to that

more general case; we will present applications of the generalization in a sequel.

Typically the MES procedure cannot be found analytically; we show here how

to approximate it numerically. The approximation has several parts, including ap-

proximating the MES procedure by the Γ-minimax expected size (Γ-MES) confidence

procedure, where Γ is a convex set of prior probability distributions supported on a

finite subset of Θ; and approximating the Γ-MES procedure numerically by optimiza-

tion and Monte Carlo simulation. The support points of Γ are spread throughout Θ

so that the Γ-minimax risk is close to the minimax risk. Section 4.3 discusses how to

use the results of the Monte Carlo step to select good support points for Γ.

Constructing the Γ-MES procedure amounts to finding the element of Γ for which

the Bayes risk is maximal: the Γ-least favorable alternative (Γ-LFA). Finding the

Γ-LFA is conceptually simple, but can be computationally intensive. Kempthorne

(1987) and Nelson (1966) give algorithms to approximate the least favorable prior dis-

tribution over compact parameter spaces for general risk functions. Those algorithms

require calculating the Bayes risk for an arbitrary prior, which can be analytically

intractable. To overcome that problem, we approximate the risk using a novel Monte

Carlo algorithm. We show that the maximum expected size of the approximated
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confidence set converges to that of the Γ-MES procedure as the size of the Monte

Carlo simulations increases. The algorithm is implemented as a Fortran-90 subrou-

tine designed to run efficiently on distributed computers with little interprocessor

communication.

This paper is organized as follows. Section 2 gives notation, assumptions and

theory. Section 3 derives a consistent estimator for the Bayes Risk. Section 4 shows

how that estimator, along with techniques from convex game theory, can be used to

approximate the Γ-LFA through Monte Carlo simulation. Section 5 shows that the

new approach can construct confidence sets that minimize risk for a general class of

loss functions involving the measure of the confidence set, including one that which

leads to the minimax regret procedure. Section 6 applies the method to an inference

problem in cosmology. Section 7 summarizes the results. Proofs are in Section 8.

2 Preliminaries

We have a family of probability distributions indexed by θ:

P ≡ {Pθ : θ ∈ Θ}.

The probability distributions are all defined on the same σ-field B over the set X ; all

are dominated by the measure µ. The density of Pθ with respect to µ is fθ. The set

Θ is itself endowed with σ-field A. Elements of A are possible confidence sets. We

assume that (θ, x) 7→ fθ(x) is product measurable. The random quantity X—which

could be multivariate—has distribution Pθ0
for some unknown θ0 ∈ Θ. The confidence

region will be based on one observation of X and an observation of U ∼ U [0, 1], a

uniform random variable independent of X. We have a set D of decision functions,

measurable mappings from Θ × X into [0, 1]. Decision functions let us use X and U

to make random subsets of Θ:

Cd(X, U) ≡ {η ∈ Θ : d(η, X) ≥ U}. (1)
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Such sets are candidate confidence sets for θ0. The chance that Cd(X, U) covers the

parameter value η ∈ Θ when in fact X ∼ Pθ is

γd(θ, η) ≡ Pθ[Cd(X, U) 3 η] = Pθ[d(η, X) ≥ U ] =

∫

X

d(η, x)fθ(x)µ(dx). (2)

Decision rules that correspond to 1 − α confidence sets are elements of

Dα ≡ {d ∈ D : γd(θ, θ) ≥ 1 − α a.e.(ν)}. (3)

Let ν be a measure on (Θ,A). We define the risk of a confidence set to be its expected

ν-measure:

R(θ, d) ≡ Eθ[ν(Cd(X, U))]. (4)

Pratt (1961) showed that the expected measure of a confidence set is the integral of

its false coverage probability , the chance that it incorrectly includes the parameter

value η when the true value is θ:

Eθ[ν(Cd(X, U))] =

∫

Θ

γd(θ, η)ν(dη). (5)

Let RΘ(d) denote the maximum risk of d over all θ ∈ Θ. Since fθ(x) and d(η, x)

are A× B-measurable,

RΘ(d) ≡ sup
θ∈Θ

R(θ, d) = sup
π

∫

Θ

R(θ, d)π(dθ), (6)

where the supremum is over all probability distributions π on (Θ,A). We will find

a numerical approximation to the decision rule dR with minimax risk over a smaller

class of distributions Γ:

RΓ(dR) = inf
d∈Dα

sup
π∈Γ

∫

Θ

R(θ, d)π(dθ). (7)

In applications, Γ might be the polytope of probability distributions on p parameter

values {θi}
p
i=1 spread evenly across Θ, or chosen randomly if Θ is high-dimensional.

This is an ad hoc element in our approach, but in Section 4.3 we describe how to

choose {θi} so that RΘ(dR) is not much larger than

inf
d∈Dα

RΘ(d). (8)
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Our numerical approximation produces a member of Dα, a 1−α confidence procedure

valid for all θ ∈ Θ, but its risk is approximately Γ-minimax, rather than exactly Γ-

minimax. The algorithm estimates the critical values for the individual tests by

simulation, so the confidence level is approximately 1 − α rather than exactly 1 − α.

2.1 Bayes-Minimax Duality

For any probability distribution π on (Θ,A), define

rπ(η, x) ≡

∫
Θ

fθ(x)π(dθ)

fη(x)
. (9)

This is the ratio of the likelihood of observing data x under the density mixed across

values of θ according to the prior π to the likelihood under parameter value η.

The Bayes risk of d for prior π is

Rπ(d) ≡

∫

Θ

R(θ, d)π(dθ)

=

∫

Θ

∫

Θ

γd(θ, η)ν(dη)π(dθ)

=

∫

Θ

∫

Θ

∫

X

d(η, x)fθ(x)µ(dx)ν(dη)π(dθ)

=

∫

Θ

∫

X

d(η, x)fη(x)rπ(η, x)µ(dx)ν(dη). (10)

The rule d is in Dα if
∫

X

d(η, x)fη(x)µ(dx) ≥ 1 − α a.e. ν. (11)

The optimal decision rule dπ ∈ Dα for prior π minimizes (10) subject to (11). The

optimal rule can be found using the construction in the Neyman-Pearson lemma:

Lemma 1.

inf
d∈Dα

Rπ(d) = Rπ(dπ), (12)

where

dπ(η, x) =





1, rπ(η, x) < cη

bη, rπ(η, x) = cη

0, rπ(η, x) > cη,

(13)
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with the constants bη ∈ [0, 1] and cη chosen so that

∫

X

dπ(η, x)fη(x)µ(dx) = 1 − α. (14)

If Γ is a collection of distributions on (Θ,A), then π0 ∈ Γ is a Γ-least favorable

alternative if Rπ0
(dπ0

) ≥ Rπ(dπ) for all π ∈ Γ. The decision procedure d0 is Γ-

minimax if

sup
π∈Γ

Rπ(d0) = inf
d∈Dα

sup
π∈Γ

Rπ(d) ≡ RΓ(dR). (15)

Theorem 1 establishes the Bayes-minimax duality.

Theorem 1 (EHS, Corollary 1). If Γ is convex and π0 is Γ-least favorable,

inf
d∈Dα

sup
π∈Γ

Rπ(d) = Rπ0
(dπ0

).

2.2 More Assumptions

Theorem 1 requires Γ to be convex. The following additional assumptions suffice for

the Monte Carlo algorithm presented in Section 3 to converge to the correct value of

the risk.

1. ν(Θ) < ∞.

2. If Pθ 6= Pθ′, θ, θ′ ∈ Θ, there must be a measurable set A ∈ A for which θ ∈ A,

θ′ ∈ AC , and 0 < ν(A)/ν(Θ) < 1.

3. The distributions {Pθ : θ ∈ Θ} all have the same support ν-a.e.

4. The convex collection of priors Γ has a finite number of vertices.

The method is not practical unless:

1. For any fixed point θ ∈ Θ, it is computationally tractable to simulate from Pθ.

2. For each vertex δv of Γ, it is computationally tractable to calculate rδv
(η, x) for

fixed η and x.
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3 Estimating the Bayes Risk

A single set of simulations can be used to estimate dπ and Rπ(dπ). We first show how

to estimate Rπ(d). Let T ∈ Θ be drawn at random from ν. Let X ∼ Pη conditional

on T = η. Recall from Lemma 1 that rπ(η, X) is the test statistic for a test of

the hypothesis θ0 = η. The test rejects the hypothesis for data x if Pη[rπ(η, X) ≥

rπ(η, x)] ≤ α. For any d ∈ D,

E[rπ(T, X)d(T, X)] = E[E[rπ(T, X)d(T, X)|T ]]

=

∫

Θ

[∫

X

rπ(η, x)d(η, x)fη(x)µ(dx)

]
ν(dη) = Rπ(d). (16)

Hence, for fixed π, the simulated distribution of rπ(T, X) can be used to estimate the

threshold for the Bayes decision rule and the Bayes risk of the Bayes decision.

We now show that the Monte Carlo estimate of the risk of the estimated optimal

rule converges almost surely to Rπ(dπ), uniformly in π ∈ Γ. Fix two positive integers

n and q. These define the size of the Monte Carlo simulations; we consider later what

happens as they increase. Let T1, T2, . . . , Tq be iid (ν) and let

{Xjk : j = 1, 2, . . . , q; k = 1, 2, . . . , n} (17)

have distribution Pη conditional on Tj = η. Let {Xjk} be independent, conditional

on all of the Tj. Define a Monte Carlo estimate of Rπ(d):

R̂π(d) ≡
1

nq

∑

j

∑

k

rπ(Tj, Xjk) d(Tj, Xjk)Kj, (18)

with rπ as defined in Equation (9). Here,

Kj ≡


K ×

(
1

n

p∑

v=1

n∑

k=1

rδv
(Tj, Xjk)

)−1

∧ 1, (19)

with K > p. The factor Kj makes R̂π(d) uniformly bounded (in π), a technical

requirement to prove convergence; it also limits the effect of simulation outliers. While

E(rδv
(Tj, Xjk)) = 1, rδv

(Tj, Xjk) can be large. But because d(Tj, Xjk) = 0 when
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rδv
(Tj, Xjk) is large, such values do not affect the estimated risk. Hence, we recommend

choosing K very large.

We next construct decision procedures supported on the simulated data sets {Xjk}.

For each j, such a decision procedure is a vector of length n with entries in [0, 1]. Fix

α and define D′
α to be the class of decision procedures that satisfy

∑

k

d(Tj, Xjk) ≥ n(1 − α) ∀j. (20)

Suppose d̂π minimizes R̂π(d) among all d ∈ D′
α. Recall that dπ minimizes Rπ(d) over

all d ∈ Dα.

Theorem 2. As n → ∞ and q → ∞,

R̂π

(
d̂π

)
a.s.
−→ Rπ(dπ) (21)

uniformly in π ∈ Γ.

Proof. See Section 8.

Corollary 1. As n → ∞ and q → ∞,

sup
π∈Γ

R̂π

(
d̂π

)
a.s.
−→ RΓ(dR) . (22)

For a given set of simulations of the random quantities, a member of Γ that maximizes

R̂π

(
d̂π

)
can be found numerically. Corollary 1 shows that when n and q are large

enough, the Bayes risk of this supremal prior is close to the Bayes risk of the Γ-least

favorable prior.

4 Implementing the Algorithm

We seek the (in simulations) Γ-least favorable prior: the π ∈ Γ that maximizes R̂π(d̂π).

(Recall that d̂π is the decision procedure d ∈ D′
α that minimizes R̂π(d).) Finding the

Γ-least favorable prior amounts to finding the optimal strategy in a convex game, as
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we shall see. Theorem 2 shows that the value of this convex game is an arbitrarily

good approximation to the Γ-minimax risk as the size of the simulations increases.

4.1 Matrix Games and Minimax Procedures

We cast Equation (18) in matrix form. Define the n by p matrix Aj with elements

Aj kv
= rδv

(Tj, Xjk)Kj. (23)

Let

A ≡
1

nq
[A1 A2 · · · Aq]

T . (24)

For a given decision rule d, let dj be the n-vector whose kth entry is d(Tj, Xjk). Define

the nq-vector

d ≡ [d1 d2 · · · dq]
T . (25)

Any prior π ∈ Γ can be written as a convex combination of the vertices of Γ:

π =

p∑

v=1

wvδv, (26)

for some w = {wv}
p
v=1 with wv ≥ 0 and

∑
v wv = 1. The matrix form of Equation (18)

is

R̂π(d) =
1

nq

q∑

j=1

dj
TAjw = dTAw. (27)

4.1.1 Solving Matrix Games

A two-player convex game is a triple (A,S1,S2) where A is an a by b matrix, S1 is

a convex, compact subset of R
a and S2 is a convex, compact subset of R

b. Player 1

chooses a strategy , an element s1 of S1. Player 2 picks a strategy s2 from S2. Player 1

pays player 2 the amount s1
TAs2.

Theorem 3. There exists a pair of strategies (s1∗, s2∗) ∈ S1 × S2 such that for any

(s1, s2) ∈ S1 × S2,

s1∗
TAs2 ≤ s1∗

TAs2∗ ≤ s1
TAs2∗. (28)
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Proof. This is a direct consequence of the classic von Neumann Minimax Theorem.

See, for example, Theorem 5.2 in Berkovitz (2002).

The pair (s1∗, s2∗) has a special optimality: By picking s1∗, Player 1 minimizes

his maximum loss. By picking s2∗, Player 2 maximizes his minimum gain. Solving

the game is finding this saddle point. The Brown-Robinson fictitious play algorithm

(Robinson, 1951; Brown, 1951) is a simple iterative approach to solving the game.

The Brown-Robinson Algorithm:

Fix a tolerance ε > 0 and initial plays for each player: s1,0 ∈ S1, s2,0 ∈ S2. Set i = 1.

Then:

1. Player 1 finds the strategy s1 ∈ S1 that minimizes v1,i ≡ s1
TAs2,i−1.

2. Player 2 finds the strategy s2 ∈ S2 that maximizes v2,i ≡ s1,i−1
TAs2.

3. If v2,i − v1,i ≤ ε, we are done. Otherwise, go to step 4.

4. Set

s1,i ≡ (s1 + (i − 1)s1,i−1) /i (29)

and

s2,i ≡ (s2 + (i − 1)s2,i−1) /i. (30)

5. Increment i and return to step 1.

Theorem 4 (Robinson (1951)). For each iteration i in the Brown-Robinson algo-

rithm,

v1,i ≤ s1∗
TAs2∗ ≤ v2,i (31)

and

lim
i→∞

(v2,i − v1,i) = 0. (32)
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Theorem 5. If player 1 uses strategy s1,i, the amount player 1 pays player 2 is less

than

s1∗
TAs2∗ + v2,i+1 − v1,i+1 (33)

no matter what strategy player 2 uses.

Proof. From Theorem 4, s1∗
TAs2∗ − v1,i+1 ≥ 0, so

s1,i
TAs ≤ v2,i+1 ≤ s1∗

TAs2∗ + v2,i+1 − v1,i+1, (34)

where s is any strategy in S2.

Theorem 5 ensures that when the Brown-Robinson algorithm terminates, player 1

has a strategy that limits his maximum loss to at most ε more than the loss at the

saddle point. While the maximum loss is close to optimal, the strategy s1i need not

be close to s1∗ in the norm.

4.1.2 Finding the Approximate Γ-LFA by Solving a Matrix Game

We now show that the problem of finding the Γ-LFA can be written as a (large) convex

game. Player 1 is the statistician. He chooses the 100(1− α)% confidence procedure

d. Player 2 is the adversary (“Nature”). She chooses w, specifying a distribution π

over the possible values of θ0. Player 1’s set of possible strategies, S1, has a special

form. All elements of d must be between zero and one. Each of the vectors dj that

comprise d must sum to (1 − α)n. These restrictions on d make S1 is convex. The

set S2 is the p-dimensional simplex: all p-vectors w with wi ≥ 0 and
∑

i wi = 1; this

is also convex.

The statistician and Nature play the convex game (A,S1,S2). The Brown-Robinson

algorithm is well-suited to this problem, because for any fixed strategy s2,i−1 Nature

picks, it is straightforward to find the strategy in S1 that is best for the statistician.

Other algorithms for solving games (e.g., by linear programming) might take fewer
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iterations, but are difficult to implement when S1 is complex. Recent work by Bryan,

McMahan, Schafer, and Schneider (2007) shows how to exploit sparsity of the payoff

matrix to solve this convex game more efficiently.

4.2 Algorithmic Implementation and Parallelization

The approach parallelizes naturally: different processors can simulate independent

samples of parameter values {Tj} and data {Xjk}. Interprocessor communication is

required only to calculate the outer sum in Equation (18), which involves {R̂δv
(dπ)}

p
v=1.

A Fortran-90 implementation of the algorithm with documentation is available at:

http://www.stat.cmu.edu/∼cschafer/LFA Search

The implementation is parallel and uses dynamic memory allocation.

Table 1 shows the largest storage requirements. The algorithm requires fast access

to n × q × p values, the simulated realizations of

{{{rδv
(Tj, Xjk)}

q
j=1}

n
k=1}

p
v=1. (35)

One might instead store the randomly simulated data; but this would be a [n × q ×

(dimension of X )] array, and then the quantities {rδv
}p

v=1 would need to be calculated

repeatedly. The operation count for calculating R̂π(dπ) is O(q×n2×p), not including

calculating the likelihood fη(x) (the number of operations required to calculate the

likelihood depends on details of the problem).

4.3 Choosing the Vertices of Γ

Whatever the true value of the parameter θ ∈ Θ, the coverage probability of the

procedure is approximately 1−α, but R(θ, dR) is guaranteed to be less than or equal

to RΓ(dR), the Γ-minimax expected size, only if Γ includes a point mass at θ. The

following result (proved in Section 8.0.2) can help select the vertices {δv}.
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Data Size Precision

Random Likelihood Ratios n × q × p single

Random Parameter Points q × b single

Thresholds q × 2 double

Confidence Region q single

Table 1: The primary storage requirements for the algorithm. The dimension of the parameter space

Θ is b. The number of randomly chosen parameter points on each processor is q. The number of

data sets generated from each random parameter is n.

Theorem 6. For θ ∈ Θ, define

Z(θ) = inf
w∈W

sup
x∈X

[
fθ(x)∑p

v=1 wvfδv
(x)

]
,

where W denotes the p-dimensional regular simplex. Then R(θ, d) ≤ Z(θ)RΓ(d).

The theorem can be applied in practice because the Monte Carlo simulations give

approximations of Z(θ) for each of the q randomly chosen values of θ:

Ẑ(ηj) =

(
max
w∈W

minAjw

)−1

, (36)

where the minimum is over the entries of the vector. Typically q � p, so the simu-

lations approximate Z(θ) for many values of θ. The estimates can be smoothed to

reduce random variability from the simulations. Points in Θ for which Z(θ) is large

can be added to the vertices of Γ.

5 General Loss Functions

The theory developed above also applies to loss functions of the form ν(Cd(x, u)) −

`(θ), where ` is any uniformly bounded function on Θ. A particularly interesting

choice of ` is

`r(θ) ≡ inf
d∈Dα

Eθ(Cd(X, U)) .
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The d ∈ D that minimizes the maximum expectation of this loss is the minimax regret

(MR) procedure. The regret at θ for using the decision function d (DeGroot, 1988)

is the difference between the risk at θ of d and the infimal risk at θ over all decision

functions. In the present problem, the regret at θ of the confidence procedure d is

the difference between the expected size of the confidence set using procedure d when

the true parameter value is θ, and the expected size of the confidence set that has

smallest expected size when the true parameter value is θ. In some inference problems,

parameter values θ for which `r(θ) is relatively large can have a strong influence on

the MES procedure: The least favorable alternative will place a lot of amount of

weight on such θ, increasing the expected size under other parameter values. Using

MR can reduce this tradeoff.

Consider the following example (Schafer and Stark (2003); EHS): Suppose X ∼

N(θ, 1) with θ ∈ [−3, 3]. The LFA for the minimax expected length 95% confidence

interval assigns probability one to θ = 0. MES minimizes the expected length for

θ = 0, effectively ignoring other values of θ. The MR procedure provides a different

tradeoff, as shown in Figure 1. The solid line is `r(θ). The dashed-dotted line is

the expected length of the MES interval. They are equal at θ = 0. The dashed

line is the expected length of the MR interval. The expected length of MR is about

20% larger than that of MES near θ = 0, but about 33% smaller when θ is far

from zero. The dotted line is the expected length of the truncated standard interval,

[X − 1.96, X + 1.96] ∩ [−3, 3].

The minimum risk at θ, `r(θ), is a complicated function. For fixed θ, `r(θ) can be

calculated using the Neyman-Pearson Lemma. If the vertices of Γ are point masses,

the algorithm described in Section 4 can approximate `r(θ) by taking the prior to

be a point mass at θ. The subroutine LFA Search mentioned in Section 4.2 can

approximate the minimax regret procedure.
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Figure 1: Expected lengths of 95% confidence intervals for a bounded normal mean θ ∈ [−3, 3] from

the datum X ∼ N(θ, 1), as a function of θ.

6 Example: Expansion of the Universe

MES and MR were developed to solve scientific problems: find precise confidence

sets for physical parameters, given constraints on those parameters, theory that re-

lates the parameters to a probability distribution on data, and data. In many in-

teresting problems, there are relatively few parameters (5–15); the constraints are

nonlinear; and the model is not given in closed form, but rather as a complex com-

puter simulation—a ”black box” from the user’s perspective. As a result, traditional

methods for constructing confidence regions can be inaccurate, inapplicable, or com-

putationally infeasible.

In this section, we use observations of Type Ia supernovae to compute MES and

MR confidence sets for θ = (Ωm, H0), where Ωm is the amount of matter in the
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Universe relative to the “critical density” of matter required for the Universe to be

spatially flat, and H0 is the Hubble parameter, the current rate of expansion of the

Universe. (See, for instance, Riess et al. (2007), Wright (2007), Wood-Vasey et al.

(2007).) The stochastic model in this example is simple, which makes it possible to

compare MES and MR confidence regions with some standard approaches; in more

complicated problems, touchstone methods are rare.

Type Ia supernovae are standard candles: two Type Ia supernovae at the same

distance from the observer have the same apparent brightness. The difference between

the apparent brightness and the brightness at the source is the distance modulus.

The redshift of a supernova is the difference in wavelength of light emitted by the

supernova in the reference frame of the supernova and in the reference frame of

the observer. Figure 2 shows observations of redshift and distance modulus for 182

Type Ia supernovae, as reported in Riess et al. (2007). The error bars represent

uncertainty in the distance modulus.

A standard theory relates redshift to distance modulus through a function of θ =

(Ωm, H0). Define

µ(z | θ) = 5 log10

(
c(1 + z)

H0

∫ z

0

du√
Ωm(1 + u)3 + (1 − Ωm)

)
+ 25, (37)

where c is the speed of light. According to the theory, the observed pairs (zi, Yi)

are realizations of Yi = µ(zi | θ) + σiεi, where the εi are iid standard normal. The

standard deviations σi are assumed to be known; in practice they are estimated from

properties of the observing instrument.

6.1 Other Methods

There are several standard approaches to constructing confidence sets for θ in this

problem. The confidence sets are derived from pivots that have approximately or

exactly chi-squared distributions.
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Figure 2: Supernovae data. The error bars represent ±1σ.

The CSQ (chi-squared) confidence set is based on the fact that

n∑

i=1

(
Yi − µ(zi | θ)

σi

)2

(38)

has the chi-squared distribution with n degrees of freedom if θ is the true value of

(Ωm, H0).

The MLE confidence set is based on the asymptotic distribution of the maximum

likelihood estimator: If θ̂ is the maximum likelihood estimator of θ and I(θ) is the

information matrix when θ is the truth, then

(θ̂ − θ)TI(θ) (θ̂ − θ) (39)
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is approximately chi-squared distributed with two degrees of freedom.

The score test (SCR) confidence set is based on the asymptotic distribution of

Rao’s score test statistic (Lehmann and Romano, 2005): Define

Sj =
∂

∂θj

log f(θ) (40)

and S = [S1 S2]
T . Then

STI−1(θ) S (41)

is approximately chi-squared distributed with two degrees of freedom.

6.2 Results

Figure 3 shows confidence sets for θ based on the data in Figure 2 for the five methods

(CSQ, MLE, SCR, MES, and MR). The parameter vector θ was restricted to the

compact set Θ with 60 ≤ H0 ≤ 90 and 500 ≤ ΩmH2
0 ≤ 25001, which is displayed in

Figure 3 as the white area outlined in gray. The MES region is the smallest. The SCR,

MLE, and MR are very similar. The CSQ region is much larger. The areas of the sets

are 2.86, 0.41, 0.40, 0.30, and 0.36 for CSQ, MLE, SCR, MES, and MR, respectively.

For these data, the MES confidence set is smaller than standard confidence sets.

Simulation results given below show that in this problem the expected sizes of MES,

MR, MLE and SCR sets are comparable, and CSQ is substantially larger. This

suggests that MES and MR will be valuable in applications where the physical theory

is complex, because then MLE and SCR are not generally feasible—CSQ is the only

standard method available.

The MES and MR confidence regions were constructed five times independently to

assess the variability due to Monte Carlo sampling. In each case, p = 70 alternatives

were chosen from a regular grid, q = 1000 values of θ were chosen via a Quasi-Monte
1The quantity ΩmH2

0
is constrained well by measurements of the cosmic microwave background radiation: the

WMAP experiment (Spergel et al., 2007) found ΩmH2

0
to be 1277, with a standard error of 80.0.
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Carlo scheme, and n = 200 data sets were simulated for each value of θ. Figure 4

plots the null values of θ, the alternative values, and the five MES and five MR regions

that resulted. The variation across simulations is small.

On a desktop computer (3.80 GHz Pentium 4), the median time for the five runs

was 25.00 minutes to calculate the MES region and 17.81 minutes to calculate the

MR region.

The size and coverage of the five methods were compared using simulation. We

simulated 5000 error vectors {εi}
182
i=1 and added each to the predictions of five models.

Using the same error vectors for five models helps isolate the effect of varying the

model from the variability due to noise. The five methods were applied to each of

the resulting 25,000 data sets. Table 2 lists the average size of the regions for each

method, along with the empirical coverage of the true value of θ. Column “BND”

gives the theoretical minimum average size of a 1 − α confidence set for each model.

Table 3 shows the “winning percentage” for each method. For each simulated data

set, a method “wins” if its region is the smallest among those that cover the true

value of θ.

The results are qualitatively similar to the performance in the bounded normal

mean problem of Section 5: towards the center of Θ, where the lower bound on ex-

pected size is largest, MES performs best. But where the bound is smallest (when

ΩmH2
0 is small), MR has smaller expected size. In this example, comparing “wins”

is about the same as comparing average size: controlling the expected size controlled

the size in individual realizations. The coverage of the MES and MR procedures is

close to the nominal confidence level (since these results are based on 5000 realiza-

tions, the standard error of the coverage estimates is approximately 0.003). The SCR

method performs well, which is not surprising given that it is asymptotically optimal

under certain conditions (see, for example, Theorem 13.5.5 in Lehmann and Romano

(2005)).
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Truth Average Size Coverage Proportion

Ωm H0 BND CSQ MLE SCR MES MR CSQ MLE SCR MES MR

0.150 86.000 0.194 1.500 0.328 0.318 0.314 0.296 0.948 0.930 0.952 0.958 0.948

0.200 70.000 0.181 1.559 0.304 0.297 0.376 0.322 0.948 0.942 0.952 0.955 0.959

0.300 62.000 0.192 1.192 0.299 0.293 0.300 0.353 0.948 0.929 0.952 0.952 0.978

0.350 75.000 0.268 1.745 0.406 0.408 0.371 0.384 0.948 0.940 0.952 0.945 0.958

0.450 67.000 0.272 1.827 0.424 0.425 0.365 0.396 0.948 0.923 0.952 0.950 0.952

Table 2: Average sizes of confidence sets and their coverage in simulations from 5 models. 5000

sets of 182 data were simulated from each model. The column “BND” shows the lowest possible

expected size for the corresponding parameter value.

Truth Proportion “Won”

Ωm H0 CSQ MLE SCR MES MR

0.150 86.000 0.044 0.013 0.164 0.224 0.554

0.200 70.000 0.044 0.170 0.534 0.031 0.219

0.300 62.000 0.042 0.165 0.349 0.348 0.094

0.350 75.000 0.040 0.134 0.024 0.533 0.268

0.450 67.000 0.042 0.064 0.067 0.780 0.046

Table 3: Fraction of “wins” of each of the five methods in simulations from five models. A method

“wins” for a particular realization if its confidence region is the smallest among those that cover the

true value of the parameter. Each row represents 5000 replications.
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7 Conclusion

Minimax expected size and minimax regret procedures are theoretically attractive

because they can exploit structural constraints. We show how to approximate mini-

max expected size and minimax regret confidence sets numerically for real, complex

applications using Monte Carlo simulation. We establish that the maximum risk

of the numerical procedure converges almost surely to the Γ-minimax risk as the

size of the simulations grows. In a two-dimensional application in cosmology, the

minimax expected size and minimax regret confidence procedures give results com-

parable to classical confidence sets based on the score test, and are much smaller

than chi-squared confidence regions. This suggests that MES and MR will be es-

pecially valuable in applications where the theory that links parameters and data is

complex: in such problems, only chi-squared regions have generally been considered

to be computationally tractable.

A parallel Fortran-90 implementation of the algorithm is available at

http://www.stat.cmu.edu/∼cschafer/LFA Search.
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8 Appendix: Proofs

8.0.1 Proof of Theorem 2

In this appendix, m indexes the Monte Carlo simulations: the number of simulated

null values of θ at stage m is qm and the number of data sets simulated from each θ

is nm. We assume that nm and qm increase with m; in fact, we take nm = m. We

allow the level of the test to depend on m. At stage m, the level is αm. We require

αm → α.

Lemma 2 (van Zwet, 1980). Suppose that J, J1, J2, . . . are uniformly bounded

Lebesgue measurable functions from [0, 1] into IR, such that for all t ∈ (0, 1),

lim
m→∞

∫ t

0

Jm(u) du =

∫ t

0

J(u) du.

Let U1, U2, . . . be a sequence of independent U [0, 1] random variables.
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Define U1:m, U2:m, . . . , Um:m to be U1, U2, . . . , Um in increasing order. Let g : [0, 1] →

IR be a Borel measurable, integrable function and define

gm(t) ≡ g
(
Ubmtc+1:m

)
.

Then, ∫ 1

0

Jm(u) gm(u) du
a.s.
−→

∫ 1

0

J(u) g(u) du.

Lemma 3. Fix η ∈ Θ and π. Define

K̄ ≡


K ×

(
1

m

p∑

v=1

∑

k

rδv
(η, Xk)

)−1

∧ 1. (42)

Then

Zm,π(η) ≡ inf
d∈D′

αm

1

m

m∑

k=1

rπ(η, Xk) d(η, Xk) K̄
a.s.
−→ inf

d∈Dα

∫

Θ

γd(θ, η)π(dθ) .

Proof. We will apply Lemma 2 with Jm(u) equal to one for u ≤ 1 − αm and zero

otherwise; J(u) is equal to one for u ≤ 1 − α and zero otherwise. Let R denote the

cdf of rπ(η, X) when X ∼ Pη, i.e., R(t) = Pη(rπ(η, X) ≤ t). The function g(·) of

Lemma 2 is g(u) = inf{t : R(t) ≥ u}. Thus, if U ∼ U [0, 1], g(U) is a random variable

with cdf R(·). We know g(·) is integrable since

∫ 1

0

|g(u)| du = E(|g(U)|) = Eη(rπ(η, X)) = 1.

Define u′ = inf{u : g(u) = g(1 − α)}, a = g(1 − α), and

c =





1−α−u′

Pη(rπ(η,X)=a)
, Pη(rπ(η, X) = a) > 0

0, otherwise.
.
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Then
∫ 1

0

J(u) g(u) du =

∫ u′

0

g(u) du +

∫ 1−α

u′

g(u) du

= E
(
g(U) 1{U<u′}

)
+ E

(
g(U) 1{u′≤U≤1−α}

)

= E
(
g(U) 1{g(U)<g(u′)}

)
+ a(1 − α − u′) (43)

= E
(
g(U) 1{g(U)<a}

)
+ a(1 − α − u′)

= Eη

(
rπ(η, X)1{rπ(η,X)<a}

)
+ c Eη

(
rπ(η, X)1{rπ(η,X)=a}

)

=

∫

X

rπ(η, x) d∗(η, x) Pη(dx)

= inf
d∈Dα

∫

X

rπ(η, x) d(η, x) Pη(dx) (44)

= inf
d∈Dα

∫

Θ

γd(θ, η)π(dθ) , (45)

where

d∗(η, x) =





1, rπ(η, x) < a

c, rπ(η, x) = a

0, otherwise.

Equation (43) holds because g(U) < g(u′) if and only if U < u′; equation (44) holds

because d∗ ∈ Dα.

Consider the function U : X × [0, 1] → [0, 1] defined by

U(x, w) = Pη(rπ(η, X) < rπ(η, x)) + wPη(rπ(η, X) = rπ(η, x)) ,

where X ∼ Pη. If {Wj}
∞
j=1 are independent U [0, 1] random variables, {Xj}

∞
j=1 are

independent random variables distributed as Pη, and {Wj} and {Xj} are independent,

then U1 ≡ U(X1, W1), U2 ≡ U(X2, W2), . . . are independent U [0, 1] random variables.

Moreover,

g(Ui) = inf {x : R(x) ≥ Ui}

= inf {x : R(x) ≥ U(Xi, Wi)}

= inf {x : Pη(rπ(η, X) ≤ x) ≥ U(Xi, Wi)}

= rπ(η, Xi) .
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Let X1:m, X2:m, . . . , Xm:m denote X1, X2, . . . , Xm ordered by the (increasing) value

of rπ(η, Xi), with ties broken arbitrarily. Likewise, let U1:m, U2:m, . . . , Um:m denote

U1, U2, . . . , Um in increasing order. Note that U(x1, w1) < U(x2, w2) if and only if

either rπ(η, x1) < rπ(η, x2) or rπ(η, x1) = rπ(η, x2) and w1 < w2. So, g(Ui:m) =

rπ(η, Xi:m).

Thus,

∫ 1

0

Jm(u) gm(u) du =

∫ 1−αm

0

gm(u) du

=
1

m

m∑

k=1

g(Uk:m) d∗(η, k)

=
1

m

m∑

k=1

rπ(η, Xk:m) d∗(η, k)

= inf
d∈D′

αm

1

m

m∑

k=1

rπ(η, Xk) d(η, Xk) , (46)

where

d∗(η, k) =





1, k < k′

(1 − αm)m − k′ + 1, k = k′

0, k > k′

and k′ = d(1 − αm)me.

Lemma 2 together with equations (45) and (46) show that

inf
d∈D′

αm

1

m

m∑

k=1

rπ(η, Xk) d(η, Xk)
a.s.
−→ inf

d∈Dα

∫

Θ

γd(θ, η)π(dθ) .

By the law of large numbers, K̄ → 1 almost surely since

E

[
p∑

v=1

rδv
(η, Xk)

]
= p < K. (47)

Hence,

Zm,π(η) ≡ inf
d∈D′

αm

1

m

m∑

k=1

rπ(η, Xk) d(η, Xk) K̄
a.s.
−→ inf

d∈Dα

∫

Θ

γd(θ, η)π(dθ) . (48)
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Lemma 4. As m → ∞,

E[Zm,π(Tjm)] −→ Rπ(dπ) . (49)

Proof. Apply the bounded convergence theorem twice to show that for fixed η ∈ Θ

E[Zm,π(η)] −→ inf
d∈Dα

∫

Θ

γd(θ, η)π(dθ) (50)

and that ∫

Θ

E[Zm,π(η)] ν(dη) −→

∫

Θ

[
inf

d∈Dα

∫

Θ

γd(θ, η)π(dθ)

]
ν(dη) . (51)

But ∫

Θ

E[Zm,π(η)] ν(dη) = E[Zm,π(Tjm)] (52)

and

∫

Θ

[
inf

d∈Dα

∫

Θ

γd(θ, η)π(dθ)

]
ν(dη) = inf

d∈Dα

∫

Θ

∫

Θ

γd(θ, η)π(dθ) ν(dη) = Rπ(dπ) .

The infimum and integral can be switched because, as established in Lemma 2.1, the

infimal d minimizes at each η.

Lemma 5. Suppose that {Um}
∞
m=1 is a sequence of random variables such that

Um =
1

qm

qm∑

j=1

Vjm (53)

where

1. {Vjm}
qm

j=1 are iid for each m and independent across m;

2. E[Vjm] ≡ µm → µ;

3. {Vjm}
qm

j=1 are nonnegative and uniformly bounded for all m; and

4. the sequence {qm}
∞
m=1 is strictly increasing.

Then Um
a.s.
−→ µ.
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Proof. Fix ε > 0. For m large enough that |µm − µ| < ε/2,

P[|Um − µ| > ε] ≤ P[|Um − µm| > ε/2] ≤

(
16

ε4

)
E
[
(Um − µm)4] , (54)

by Markov’s inequality. Set Wjm ≡ Vjm − µm.

E
[
(Um − µm)4] = q−4

m E



(

qm∑

j=1

Wjm

)4



= q−4
m

(
qmE

[
W 4

1m

]
+ 3qm(qm − 1) E

[
W 2

1m

]2)

≤ c q−2
m ≤ c m−2,

where the constant c does not depend on m. See the proof of Theorem 6.1 in Billings-

ley (1995). Hence, by Borel-Cantelli,

P[|Um − µ| > ε i.o.] = 0. (55)

This implies that Um → µ almost surely.

These results in combination imply that as m → ∞,

R̂π(dπ,m) =
1

qm

qm∑

j=1

Zm,π(Tjm)
a.s.
−→ Rπ(dπ) (56)

for any probability distribution π on (Θ,A).

Lemma 6. Let π, π′ ∈ Γ such that π =
∑

v wvδv and π′ =
∑

v w′
vδv. Then, for all m,

∣∣∣R̂π(dπ,m) − R̂π′(dπ′,m)
∣∣∣ ≤ K‖w − w′‖1. (57)

Proof. For fixed indices j and m, let d′ be the decision procedure d ∈ D′
αm

that

minimizes the smaller of

∑

k

rπ(Tjm, Xjkm) d(Tjm, Xjkm) (58)

and
∑

k

rπ′(Tjm, Xjkm) d(Tjm, Xjkm) . (59)
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Then d′ is either dπ,m or dπ′,m. Thus,

|Zm,π(Tjm) − Zm,π′(Tjm)| ≤
∑

v

|wv − w′
v|

(
1

m

∑

k

rδv
(Tjm, Xjkm) d′(Tjm, Xjkm) Kjm

)

≤ K

p∑

v=1

|wv − w′
v|

= K ‖w − w′‖1.

Since

R̂π(dπ,m) =
1

qm

qm∑

j=1

Zm,π(Tjm) , (60)

we have the desired result.

Lemma 6 implies that {R̂π(dπ,m)}∞m=1 is an equicontinuous family of functions of the

weight vector w associated with π. The space of possible weights is compact, so

the pointwise convergence for fixed π yields uniform convergence in π. (See Royden

(1988), page 168, Lemma 39.) This completes the proof of Theorem 2. �

8.0.2 Proof of Theorem 6

It follows from the definition of Z(θ) that there exists some w ∈ W such that for any

ε > 0, fθ(x) ≤ (Z(θ) + ε)(
∑p

v=1 wvfδv
(x)) for all x ∈ X . Hence,

R(θ, d) =

∫

Θ

∫

X

d(η, x)fθ(x)µ(dx)ν(dη)

≤

∫

Θ

∫

X

d(η, x)(Z(θ) + ε)

[
p∑

v=1

wvfδv
(x)

]
µ(dx)ν(dη)

= (Z(θ) + ε)

p∑

v=1

wvRδv
(d)

≤ (Z(θ) + ε)RΓ(d).

Since this is true for all ε, it follows that R(θ, d) ≤ Z(θ)RΓ(d). �
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Figure 3: Confidence regions given by five approaches applied to the data shown in Figure 2. The

smallest region (the hashed ellipse) is MES. The MLE, SCR, and MR regions are nearly identical.

The larger truncated ellipse is the CSQ region. See text for descriptions of the methods. The plus

sign marks the maximum likelihood estimate.
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Figure 4: The q = 1, 000 hypothesized values of θ (circular dots) and the p = 70 alternative values

(squares). The ellipses are confidence regions from five replications of the algorithm applied to the

same data to show the sampling variability from the Monte Carlo steps. The five MES regions are

the nearly overlapping dashed ellipses; the five MR regions are the slightly larger solid ellipses.
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