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Notation and setting

Notation etc.

Upper-case letters are random variables, lower-case their
realizations
Stochastic process . . . ,X−1,X0,X1,X2, . . .
X t

s = (Xs,Xs+1, . . .Xt−1,Xt )
Past up to and including t is X t

−∞, future is X∞t+1
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Notation and setting

Making a Prediction

Look at X t
−∞, make a guess about X∞t+1

Most general guess is a probability distribution
Only ever attend to selected aspects of X t

−∞

mean, variance,
phase of 1st three Fourier modes
∴ guess is a function or statistic of X t

−∞
What’s a good statistic to use?
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−∞, make a guess about X∞t+1
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Only ever attend to selected aspects of X t

−∞ mean, variance,
phase of 1st three Fourier modes
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Notation and setting

Predictive Sufficiency

For any statistic σ,

I[X∞t+1; X t
−∞] ≥ I[X∞t+1;σ(X t

−∞)]

σ is sufficient iff

I[X∞t+1; X t
−∞] = I[X∞t+1;σ(X t

−∞)]

Sufficient statistics retain all predictive information in the data
(need information theory to be precise about this)
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Notation and setting

Why Care About Sufficiency?

Optimal strategy, under any loss function, only needs a
sufficient statistic (Blackwell & Girshick)
Strategies using insufficient statistics can generally be
improved (Blackwell & Rao)
Excuse for not worrying about particular loss functions
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Causal States

Crutchfield and Young (1989)
Histories a and b are equivalent iff

Pr
(
X∞t+1|X t

−∞ = a
)

= Pr
(
X∞t+1|X t

−∞ = b
)

[a] ≡ all histories equivalent to a
The statistic of interest, the causal state, is

ε(x t
−∞) = [x t

−∞] = st

Each state is an equivalence class of histories
Each state is a conditional distribution over future events
IID = 1 state, periodic = p states
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About “Causal”

Term introduced by Crutchfield and Young (1989)
For statistics, “causal” ≈ conditional independence under
manipulation (Spirtes et al., 2001; Pearl, 2009)
These states give us conditional independence but no
guarantees about counterfactuals; candidates for causal
models (Shalizi and Moore, 2003)
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Notation and setting

set of histories, color-coded by conditional distribution of futures
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Notation and setting

Partitioning histories into causal states
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Sufficiency
Markov Properties
Minimalities

Sufficiency

Shalizi and Crutchfield (2001)

I[X∞t+1; X t
−∞] = I[X∞t+1; ε(X t

−∞)]

because

Pr
(
X∞t+1|St = ε(x t

−∞)
)

=

∫
y∈[x t

−∞]
Pr
(
X∞t+1|X t

−∞ = y
)

Pr
(
X t
−∞ = y |St = ε(x t

−∞)
)

dy

= Pr
(
X∞t+1|X t

−∞ = x t
−∞
)
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A non-sufficient partition of histories
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Effect of insufficiency on predictive distributions
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Markov Properties

Future observations are independent of the past given the
causal state:

X∞t+1 |= X t
−∞|St

because of sufficiency:

Pr
(
X∞t+1|X t

−∞ = x t
−∞,St = ε(x t

−∞)
)

= Pr
(
X∞t+1|X t

−∞ = x t
−∞
)

= Pr
(
X∞t+1|St = ε(x t

−∞)
)
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Recursive Updating/Deterministic Transitions

Recursive transitions for states:

ε(x t+1
−∞) = T (ε(x t

−∞), xt+1)

Automata theory: “deterministic transitions” (even though there
are probabilities)
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If a ∼ b, any future event F , and single observation f

Pr
(
X∞t+1 ∈ fF |X t

−∞ = a
)

= Pr
(
X∞t+1 ∈ fF |X t

−∞ = b
)

Pr
(
Xt+1 = f ,X∞t+2 ∈ F |X t

−∞ = a
)

= Pr
(
Xt+1 = f ,X∞t+2 ∈ F |X t

−∞ = b
)

. . .

Pr
(
X∞t+2 ∈ F |X t

−∞ = a,X∞t+1 = f
)

= Pr
(
X∞t+2 ∈ F |X t

−∞ = b,X∞t+1 = f
)

Pr
(

X∞t+2 ∈ F |X t+1
−∞ = af

)
= Pr

(
X∞t+2 ∈ F |X t+1

−∞ = bf
)

af ∼ bf

EXERCISE: Filling in the missing step
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Causal States are Markovian

S∞t+1 |= S
t−1
−∞|St

because
S∞t+1 is a function of St and X∞t+1
and
X∞t+1 is independent of all of the past given St
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Markovian Representation

The observed process (Xt ) is non-Markovian and ugly
But it is generated from a homogeneous Markov process (St )
Not the usual sort of hidden Markov model because of the
deterministic transitions
(An advantage, HMMs need complicated calculations to
estimate distributions over their states)
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Minimality

ε is minimal sufficient
= can be computed from any other sufficient statistic

= for any sufficient η, exists a function g such that

ε(X t
−∞) = g(η(X t

−∞))

Therefore, if η is sufficient

I[ε(X t
−∞); X t

−∞] ≤ I[η(X t
−∞); X t

−∞]
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Sufficient, but not minimal, partition of histories
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Coarser than the causal states, but not sufficient
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Uniqueness

There is no other minimal sufficient statistic

If η is minimal, there is an h such that

η = h(ε)

but ε = g(η) so

g(h(ε)) = ε

h(g(η)) = η

g = h−1 and ε and η partition histories in the same way
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Minimal stochasticity

If Rt = η(X t
−∞) is also sufficient, then

H[Rt+1|Rt ] ≥ H[St+1|St ]

∴ the causal states are the closest we get to a deterministic
model, without losing predictive ability
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Entropy Rate

Recall h1 = limn→∞H[Xn|X n−1
1 ]

lim
n→∞

H[Xn|X n−1
1 ] = lim

n→∞
H[Xn|Sn−1]

= H[X1|S0]

so knowing the causal states lets us calculate the entropy rate
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History and Aliases

Statistical relevance basis (Salmon, 1971, 1984)

Measure-theoretic prediction process (Knight, 1975, 1992)
Forecasting/true measure complexity (Grassberger, 1986)
Causal states, ε machine (Crutchfield and Young, 1989)
Observable operator model (Jaeger, 2000)
Predictive state representations (Littman et al., 2002)
Sufficient posterior representation (Langford et al., 2009)
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Statistical Complexity

Definition

C ≡ I[ε(X t
−∞); X t

−∞] is the statistical forecasting complexity
of the process

= amount of information about the past needed for optimal
prediction
= H[ε(X t

−∞)] for discrete causal states
= log(period) for period processes
= log(geometric mean(recurrence time)) for stationary
processes
= information about microstate in macroscopic observations
(sometimes)
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Can We Find Causal State Models?

Depends on the meaning of “find”
Parameter estimation with known structure (“learning”)

curved exponential families
maximum likelihood estimation is simple, consistent and
efficient

Reconstruct the structure from observed behavior
(“discovery”)
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CSSR: Causal State Splitting Reconstruction

Key observation: Recursion + one-step-ahead predictive
sufficiency⇒ general predictive sufficiency

Get next-step distribution right
Then make states recursive

Assumes discrete observations, discrete time, finite causal
states
Paper: Shalizi and Klinkner (2004); C++ code,
http://bactra.org/CSSR/

CSSS Optimal Prediction
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One-Step Ahead Prediction

Start with all histories in the same state

Given current partition of histories into states, test whether
going one step further back into the past changes the next-step
conditional distribution
Use a real hypothesis test to control false positive rate

If yes, split that cell of the partition, but see if it matches an
existing distribution
Must allow this merging or else lose minimality

If no match, add new cell to the partition
Stop when no more divisions can be made or a maximum
history length Λ is reached
For consistency, Λ < logn

h1+ι
for some ι (from AEP)
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Ensuring Recursive Transitions

Need to determinize a probabilistic automaton
Several ways of doing this; technical and not worth going into
here
Trickiest part of the algorithm and can influence the
finite-sample behavior
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Convergence

S = true causal state structure
Ŝn = structure reconstructed from n data points
Assume: finite # of states, every state has a finite history, using
long enough histories, technicalities:

Pr
(
Ŝn 6= S

)
→ 0

D = true distribution, D̂n = inferred
Error (in L1/total variation) scales like independent samples

E
[
|D̂n −D|

]
= O(n−1/2)
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Handwaving

Empirical conditional distributions for histories converge (large
deviations principle for Markov chains)
Histories in the same state become harder to accidentally
separate
Histories in different states become harder to confuse
Each state’s predictive distribution converges O(n−1/2), from
LDP again, take mixture

CSSS Optimal Prediction



Set-Up
Optimality Properties

Reconstruction
References

Example: The Even Process
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Blocks of As of any length, separated by even-length blocks of
Bs
Infinite-range correlation (not Markov at any order)
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reconstruction with Λ = 3, n = 1000
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Some Uses

Geomagnetic fluctuations (Clarke et al., 2003)
Natural language processing (Padró and Padró, 2005a,c,b,
2007a,b)
Anomaly detection (Friedlander et al., 2003a,b; Ray, 2004)
Information sharing in networks (Klinkner et al., 2006; Shalizi
et al., 2007)
Social media propagation (Cointet et al., 2007)
Neural spike train analysis (Haslinger et al., 2010)
Spatio-temporal applications: next lecture!
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