Handout 2 More Similarity Searching; Multidimensional Scaling

36-350: Data Mining

August 30, 2006

READING: Principles of Data Mining, sec. 14.3 (skip 14.3.3 for now) and 14.4.

Let's recap similarity searching for documents. We represent each document as a "bag of words", i.e., a vector giving the number of times each word occurred in the document. This abstracts away all the grammatical structure, context, etc., leaving us with a matrix whose rows are feature vectors, a "data frame". To find documents which are similar to a given document Q, we calculate the distance between Q and all the other documents, i.e., the distance between their feature vectors. We then return the k closest documents.

Today we're going to look at some wrinkles and extensions.

Stemming As I mentioned in lecture, it is a lot easier to decide what counts as "a word" in English than in some other languages.¹ Even so, we need to decide whether "car" and "cars" are the same word, for our purposes, or not. *Stemming* takes derived forms of words (like "cars", "flying") and reduces them to their stem ("car", "fly"). Doing this well requires linguistic knowledge (so the system doesn't think the stem of "potatoes" is "potatoe"), and it can even be harmful (if the document has "Saturns", plural, it's most likely about the cars).

Multidimensional Scaling The bag-of-words vectors representing our documents generally live in spaces with lots of dimensions, certainly more than three, which are hard for ordinary humans to visualize. However, we can compute the distance between any two vectors, so we know how far apart they are. *Multidimensional scaling* (MDS) is the general name for a family of algorithms which take high-dimensional vectors and map them down to two- or three-dimensional vectors, trying to preserve all the relevant distances. (See Sec. 3.7 in the textbook for some algorithmic details.) There is almost always some distortion. We will see a lot of multidimensional scaling plots.

 $^{^1 {\}rm The}$ Turkish example I was trying to remember is yapabilecekdiyseniz, "if you were going to be able to do".

Classification Some very important data-mining task is *classifying* new pieces of data, that is, assigning them to one of a fixed number of *classes*. Last time, our two classes were "about automobiles" and "about motorcycles". Usually, new data doesn't come with a class label, so we have to somehow guess the class from the features.² With a *nearest neighbor* strategy, we guess that the new object is in the same class as the closest already-classified object. (We saw this at the end of the last lecture.) With a *prototype* strategy, we pick out the "most representative" member of each class, or perhaps the average of each class, as its prototype, and guess that new objects belong to the class with the closer prototype. We will see many other *classifier rules*, in addition to these two, but these are ones we can apply as soon as we know how to calculate distance.

Queries Are Documents I promised that we could avoid having to come up with an initial document. The trick to this is to realize that a query, whether an actual sentence ("What are the common problems of the 2001 model year Saturn?") or just a list of key words ("problems 2001 model Saturn") is a small document. If we represent user queries as bags of words, we can use our similarity searching procedure on them. If this works, we have a search technique which find mostly-relevant things (the *precision* is high), and most relevant items are found (the *recall* is high).

Inverse Document Frequency (IDF) Weighting We are using features (word counts) to identify documents which are *relevant* to our query. Not all features are going to be equally useful. Some words are so common that they give us almost no ability at all to discriminate between relevant and irrelevant documents. In (most) collections of English documents, looking at "the", "of", "a", etc., is a waste of time. We could handle this by a fixed list of *stop words*, which we just don't count, but this at once too crude (all or nothing) and too much work (we need to think up the list).

Inverse document frequency (IDF) is a more adaptive approach. The document frequency of a w is the number of documents it appears in, n_w . The IDF weight of w is

$$IDF(w) \equiv \log \frac{N}{n_w}$$

where N is the total size of our collection. Now when we make our bag-ofwords vector for the document Q, the number of times w appears in Q, Q_w , is multiplied by IDF(w). Notice that if w appears in every document, $n_w = N$ and it gets an IDF weight of zero; we won't use it to calculate distances. This takes care of most of the things we'd use a list of stop-words for, but it also takes into account, implicitly, the kind of documents we're using. (In a data base of papers on genetics, "gene" and "DNA" are going to have IDF weights of near zero too.) On the other hand, if w appears in only a few documents, it will get a weight of about $\log N$, and all documents containing w will tend to be close to each other.

 $^{^{2}}$ If it does come with a label, we read the label.

Normalization	Equal weight	IDF weight
None	83	79
Document length	63	60
Euclidean length	59	21

Table 1: Number of mis-classifications in a larger (199 document) collection of posts from rec.auto and rec.motorcycles, for different normalizations of Euclidean distance, with and without IDF weighting. (Classification is by the nearest neighbor method.)

Table 1 shows how including IDF weighting improves our ability to classify posts as either about cars or about motorcycles.

You could tell a similar story about any increasing function, not just log, but log happens to work very well in practice, in part because it's not very sensitive to the exact number of documents. So this is not the same log we will see in information theory, or the log in psychophysics. Notice also that this is *not* guaranteed to work. Even if w appears in every document, so IDF(w) = 0, it might be common in some of them and rare in others, so we'll ignore what might have been useful information. (Maybe genetics papers about laboratory procedures use "DNA" more often, and papers about hereditary diseases use "gene" more often.)

— This is our first look at the problem of *feature selection*: how do we pick out good, useful features from the very large, perhaps infinite, collection of possible features? We will come back to this in various ways throughout the course. Right now, concentrate on the fact that in search, and other classification problems, we are looking for features that let us *discriminate* between the classes.

Feedback People are much better at telling whether you've found what they're looking for than explaining what it is that they're looking for. Queries, though, are users trying to explain what they're looking for (to a computer, no less), so they're often not very good. An important idea in data mining is that people should do things at which they are better than computers and vice versa: here they should be deciders, not explainers. *Rocchio's algorithm* takes feedback from the user, about which documents were relevant, and then refines the search, giving more weight to what they like, and less to what they don't like.

The user gives the system some query, whose bag-of-words vector is Q_t . The system responses with various documents, some of which the user marks as relevant (R) and others as not-relevant (NR). The system then modifies the query vector:

$$Q_{t+1} = \alpha Q_t + \frac{\beta}{|R|} \sum_{doc\in R} doc - \frac{\gamma}{|NR|} \sum_{doc\in NR} doc$$

where |R| and |NR| are the number of relevant and non-relevant documents,

and α , β and γ are positive constants. α says how much continuity there is between the old search and the new one; β and γ gauge our preference for recall (we find more relevant items) versus precision (more of what we find is relevant). The system then runs another search with Q_{t+1} , and cycle starts over. As this is repeated, Q_t becomes closer to the bag-of-words vector which best represents what the user has in mind, assuming they have something definite and consistent in mind.

Notice: A word can't appear in a document a negative number of times, so ordinarily bag-of-words vectors have non-negative components. Q_t , however, can easily come to have negative components, representing the words whose *presence* is evidence that the document is not relevant. Returning to the example of problems with used 2001 Saturns, we probably don't want anything which contains "Titan" or "Rhea", since it's either about mythology or astronomy, and giving our query negative components for those words suppresses those documents.

Rocchio's algorithm can be applied to any kind of similarity-based search, not just to text. It is closely related to a lot of algorithms in machine learning which incrementally adjust in the direction of what has worked and away from what has not — the *perceptron algorithm* for learning linear classifiers, the *stochastic approximation* algorithm for estimating functions and curves, *reinforcement learning* for making decisions. These similarities are no accident; they are all variants on the idea of evolution by means of natural selection.

