
Similarity and Invariance; Searching for Similar

Images

36-350: Data Mining

September 6, 2006

Reading: Section 14.5 in the textbook.

So far, we have seen how to search and categorize texts by representing
them as feature vectors — bag-of-word vectors, appropriately scaled. All of the
procedures we have used have depended only on the feature vectors, not on the
underlying text. We can use the same techniques on any other kind of data, if
only we define features for them, too, and represent them as feature vectors. (In
terms of computer programming, using features rather than raw data is a kind
of abstraction, and one of the advantages of abstraction is, exactly, facilitating
the re-use of methods and procedures.) Whether recycling our techniques from
text to some other domain will work well depends largely on how well we chose
our features. As an example, let’s look at images.

Computers represent images as matrices of pixels1; the matrix entries give
the color of each pixel.

Colors Colors themselves are typically represented as three-dimensional vec-
tors. Probably the most common color representation is RGB, where each color
gets a red value, a green value and a blue value, between 0 and 1, indicating
how the three primary colors should be blended2. Black is (0, 0, 0) and white
is (1, 1, 1). The collection of all possible RGB colors is called the RGB cube.
An alternative representation is the HSV scheme, where the hue gives the color
type, represented as angle around a standard color wheel, saturation gives the
“vibrancy” or “purity” of the color (low saturation = a lot of gray mixed in) and
value is simply the brightness. The HSV color space is generally graphed as a
cylinder or cone, and not a cube. These two schemes are actually equivalent to
each other, and generally the most common for screen colors; there are however
many others, and printed colors need a different color space, because they have
a different physical basis.

1Actually, some graphics formats, like jpeg, use other representations, which are more
compact for typical images. All formats get translated into pixel matrices when they’re
displayed, however, so we’ll ignore this complication.

2There are three primary colors because normal human eyes contain three different sorts
of color-sensitive cells, each tuned to a different band of light. Color-blind people effectively
only have two primary colors; some other species of animals have four.

1



Figure 1: The images flower1 (left) and flower2 (right) from our data set.
flower2 is a close-up photo of the middle flower from flower1.

Many physically distinct colors, from different points in the RGB cube, are
psychologically indistinguishable3, or differ only trivially. Rather than use the
full color space available to the computer, it is often desirable to quantize color
down to a smaller number of values, effectively merging similar colors (so that
we just have one “red”, and not millions of shades of red). Geometrically, this
means partitioning the RGB cube, cutting it into cells, and treating all colors
in a cell as equivalent, calling them with a single name. (This corresponds
to stemming for words, or, if the cells are very big and coarse, going beyond
stemming to lumping together words with similar meanings, like “steel” and
“iron”.)

Back to Images Just as with documents, we would now like to do similarity
searching for images. The user should be able to give the system an initial image
and tell it “find me more which look like this”.

The most straightforward approach would use the computer’s representation
of the image directly. If it’s a color image of M × N pixels, we have a list of
3MN numbers; call this our “feature” vector, and calculate Euclidean distances
as before. This can actually work OK for some purposes, like undoing the
effects of some kinds of camera distortions, but it’s not very good at finding
meaningfully similar images. For instance, flower2 is a close-up of the middle
flower from flower1, but their Euclidean distance will be very large. (Why?)

Since the bag-of-words representation served us well with documents, we
might try the same thing here; it’s called the bag of colors. We first chose
a quantization of the color space, and then, for each quantized color, count
the number of pixels of that color in the image (possibly zero). That is, our
procedure is as follows:

1. The user gives us an image Q. Convert it into a vector of color counts.
3On average, women tend to be better at color discrimination than men, and there is some

evidence that this is due to hormonal differences, but the overlap is large, and most people
can get better with practice.

2



2. For each image in the collection, measure the distance to Q.

3. Return the k images closest to Q.

Today’s data are photographs of flowers, photographs of tigers, and pho-
tographs of the ocean. Here is part of the color-count representation of the
data.

violetred4 goldenrod lightskyblue4 gray58.2
flower1 59 0 0 0
flower2 128 0 0 0
flower3 166 75 0 0
tiger1 0 4 457 85
tiger2 0 0 0 2
tiger3 0 0 0 115
ocean1 0 0 4326 433
ocean2 0 0 2761 142
ocean3 0 0 1179 8596

Just as with documents, we found it useful to emphasize rare words, it can
be helpful to emphasize rare colors, by using the inverse picture frequency, IPF:

IPF (c) = log
(

1
PF (c)

)
Colors which occur frequently, like a black border, will have a small IPF (c).
(Notice that both flower1 and flower2 have such a border.)

3



flo
w

er
1

flo
w

er
2

flo
w

er
3

flo
w

er
4

flo
w

er
5

flo
w

er
6

flo
w

er
7

flo
w

er
8

flo
w

er
9

tig
er

1
tig

er
2

tig
er

3
tig

er
4

tig
er

5
tig

er
6

tig
er

7
tig

er
8

tig
er

9
oc

ea
n1

oc
ea

n2
oc

ea
n3

oc
ea

n4
oc

ea
n5

oc
ea

n6
oc

ea
n7

ocean7

ocean6

ocean5

ocean4

ocean3

ocean2

ocean1

tiger9

tiger8

tiger7

tiger6

tiger5

tiger4

tiger3

tiger2

tiger1

flower9

flower8

flower7

flower6

flower5

flower4

flower3

flower2

flower1

Distance matrix
Normalized by Euclidean length
Lighter = Closer
No retrieval errors

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

V1

V
2

flower1

flower2

flower3

flower4

flower5

flower6

flower7

flower8

flower9

tiger1
tiger2

tiger3

tiger4

tiger5

tiger6

tiger7
tiger8

tiger9

ocean1

ocean2

ocean3ocean4

ocean5 ocean6

ocean7

flower ocean tiger
Multidimensional scaling

4



Retrieval errors:
Normalization Equal weight IPF weight

None 8 4
Picture size 8 0

Euclidean length 7 0
As a sheer classification task, this example is a bit trivial. Our ancestors

spent the last sixty-odd million years getting very good at sorting flowers from
big cats at a glance. On the other hand, we do not have the same evolutionary
priming for other kinds of image classification, like looking at a microscope slide
and telling whether the cells on it are normal or cancerous...

Invariance

When trying to decide whether or not a certain representation is going to be
useful, it’s often helpful to think about the invariances of the representation.
That is, what sorts of changes could we make to the object, without changing
its representation? (The representation is invariant under those changes.) In-
variances tell us what the representation ignores, what concrete aspects of the
object it abstracts away from. Abstraction as such is neither good nor bad;
particular abstractions are more or less useful for particular tasks.

The bag-of-words representation is invariant to changes in punctuation, word
order, and general grammar. If it is normalized, it is also invariant to changes
in document length. If inverse-document-frequency weighting is used, it is in-
variant under changes in the exact counts of the most common words (“the”,
“of”, “and”, etc.) which appear in any text written in English. Stemming, and
grouping together synonyms, would add extra invariances. These invariances
make the representations good at finding documents with similar topics, even
though they might be written by different people. (By the same token, these
invariances make it hard to, say, find all the stories by a given author.)

What invariances do we get for images in the bag-of-colors representation?

• Position of objects, pose, small changes in camera angle

• Small amounts of zooming

• Small amounts of unusual colors

• Differences in texture: we can scramble the pixels in any region, even the
whole image, without effect. (Plaids and stripes seem the same.)

Some other invariances we might like, but don’t get with color counts:

• Lighting and shadows; time of day

• Occlusion (one object covers another), placement in 3D

• Blurring, changes in focus

5



If there is an invariance we don’t want, we can “break” that invariance by
adding additional features. There are various schemes for representing textures,
so that plaids, stripes, spots, “snow”, solid colors, etc. can be distinguished,
and many systems for content-based image searching combine color-counting
with textures.

It’s harder to add an invariance than to break one; generally you need to go
back to the beginning and re-design your representation. The sorts of invariances
we I just said we’d like to have, but don’t, with this representation are all very
hard to achieve; roughly 40% of the human cortex is devoted to visual processing
for a very good reason.

You should think about what invariances the following representations have,
and how they compare to the invariances of the bag-of-colors representation.
The first one is much smaller than the bag of colors, and the second one is
larger.

1. Represent an image by its average pixel color.

2. Represent an image by dividing it into four quarters, and doing color-
counts in each quarter. (Is there any reason why four equal parts should
be special?)

Practice

Content-based image retrieval systems are used commercially. All the ones I
know of include the bag-of-colors representation, but generally also a number
of other features. The one from Convera has a nice online demo, http://vrw.
convera.com:8015/cst. You should play around with it and try to think about
what representation it is using of the images.

Google’s image search is very popular, but it’s a total cheat, and doesn’t
analyze the images at all. Instead, it searches on the phrases you give it, takes
the pages which get a high rank, and assumes that images which appear on those
pages close you your query phrase are probably pictures of what you are looking
for. If you ask it for images of “stellar collapse”, it gives you lots of astrophysical
diagrams and illustrations, pictures taken at astrophysics conferences, and the
cover of an album titled Stellar Collapse by a band called Birchville Cat Motel.

6

http://vrw.convera.com:8015/cst
http://vrw.convera.com:8015/cst

