Image Searches and Invariance

36-350: Data Mining6 September 2006

- Finding illustrations
- Medical: x-rays, brain imaging, histology ("are these cells cancerous?")
- Satellite imagery
- Fingerprints

Searching for Images by Searching for Text

- Assume there's text accompanying the images ("annotation")
- Search those text records with the query phrase
- Take images which appear close to the query phrase on highly-ranked records
- This how Google does it

Pittsburgh's Cathedral of

Open "http://images.google.com/imgres?imgurl=http://www.netspace.org...%26safe%3Doff%26client%3Dsafari%26rls%3Den%26sa%3DG" in a new window

The Cathedral of Learning

Jen Hartman at Cathedral of ... Cathedral of Learning, U. of

Sometimes this works...

Wallpaper Musik Atomic-Kitten 1024 x 768 pixels - 99k - jpg www.new-dream.de

kitten information, cat and ... 189 x 226 pixels - 9k - jpg www.kitten-stork.com More results from www.kitten-

sometimes it doesn't; depends on the text!

Kitten Anonymous 12th century Album ... 440 x 440 pixels - 36k - jpg www.asianart.com

kitten Diler Maaw 450 x 556 pixels - 41k - jpg maaw.net

Searching for images by representing images

- For text, we only cared about *features*, and only operated on *feature vectors*
- Define features for images and everything carries over (abstraction)
- Key is finding good features

flower2

flower3

tigerl

oceanl

tiger2

ocean2

tiger3

Euclidean Distance of Images

- Image is MxN pixels, each with 3 color components, so a 3MN vector
- Euclidean distance possible, and OK for some kinds of noise-removal
- but hopeless even at grouping flower1 with flower2
- or slight changes in perspective...

Bag of Colors

- "If it works, try it some more"
- For each possible color, count how many pixels there are of that color
- Use Euclidean distance on color-count vectors
- Too many colors, so quantize them down to a manageable number (like stemming, or combining synonyms)

Distances between images

MDS plot of images

Representation and Invariance

- Invariances of a representation = how can we change the underlying object without changing the representation?
- What differences does the representation ignore?

Invariants of bags of words

- Punctuation and word order ("Why do you love me?" vs. "Why, you do love me!")
- Universal words (exact count of "the"), if using inverse document frequency
- Grammar, context, ...

Invariants of bags of colors

- Small changes in orientation, pose, over-all rotations
- Small amounts of color noise or weird colors
- Texture

Same color counts, different textures

Non-invariants

- Lighting, shadows
- Occlusion, 3D effects
- Blurring
 - There are good ways to deal with blur (from astronomy)
 - but full vision is very, very hard

- Breaking an invariance is easy
 - e.g., add features for textures
 - or sub-divide the image and do colorcounts on each part
- Adding invariances is hard
 - often need to go back to scratch