Making Better Features: Principal Components
Analysis and Other Data Transformations

36-350: Data Mining
September 27, 2006

READING: Sections 2.4, 3.4, 3.5 and 3.6 in the textbook, especially Section 3.6
on principle component analysis.

Clustering, as we’ve seen, tries to group data points together based on the
associations between feature vectors. However, it takes the choice of features as
given. We'’ve already seen some ideas for checking the value of features, mostly
in connection with classification. This lecture is going to explain some of the
main ways we can transform existing features into new ones, which may be more
valuable.

This Week’s Models

This week’s dataset is 93 cars from the 1993 model year, each with 11 features.

Type Small, Sporty, Compact, Midsize, Large, or Van
Price Midrange Price (in $1,000)

MPG.highway Highway miles per gallon by EPA rating
EngineSize Engine size (liters)

Passengers Passenger capacity (persons)

Length Length (inches)

Wheelbase Wheelbase (inches)

Width Width (inches)

Weight Weight (pounds)

All of the features except Type are numerical. Table 1 shows the first few lines
from the data set.

We want to extract patterns from this data, like combinations of features
which tend to appear together (clusters), and combinations of features which
tend to not appear together (voids and anomalies).

Standardizing and Transforming

We want our results to be invariant to the units used to represent the fea-
tures (pounds versus ounces versus kilograms, etc.). In other words, we want



Type Price MPG.highway EngineSize Horsepower

Acura Integra Small 15.9 31 1.8 140

Dodge Colt Small 9.2 33 1.5 92

Dodge Shadow Small 11.3 29 2.2 93

Eagle Summit Small 12.2 33 1.5 92

Ford Festiva Small 7.4 33 1.3 63
Passengers Length Wheelbase Width Turn.circle Weight

Acura Integra 5 177 102 68 37 2705

Dodge Colt 5 174 98 66 32 2270

Dodge Shadow 5 172 97 67 38 2670

Eagle Summit 5 174 98 66 36 2295

Ford Festiva 4 141 90 63 33 1845

Table 1: The first five lines of the cars data set.

invariance to scaling. Similarly, we want to be invariant to any simple transfor-
mation of an feature, like miles per gallon vs. gallons per mile. This is done by
standardizing the attributes to have similar distributions.

Some different ways to standardize data:

Rank conversion Replace all values with their rank in the dataset. This is
invariant to any monotonic transformation, including scaling.

Scale to equalize variance Subtract the mean from attribute, and divide by
its standard deviation (making it have mean 0, variance 1). This is invari-
ant to changes in units and shift in the origin, but not other transforma-
tions.

Whitening Scale and subtract attributes from each other to make the vari-
ances 1 and covariances 0. This is invariant to taking linear combinations
of the attributes.

These standardizations are special cases of transforming the features, which
we do because their unmodified distributions are in some manner unhelpful.
Transformations ought to be invertible — there should be a one-to-one map-
ping from the old to the new values, so that no information is lost. The
three standardization methods I've just mentioned all tend to make different
attributes more comparable, because they give them similar ranges, means
and variances. We also like our data to have symmetric distributions, and
transformations can increase the symmetry. In particular, data with highly
skewed distributions over broad ranges often look nicer when we take their log-
arithms (Figure 1).

There are a number of algorithms which search for the “optimal” transfor-
mation of the data, according to some criterion. It’s not at all clear that these
are useful in practice, so we’ll skip them.
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Figure 1: Taking the logarithm of the data values can make skewed distributions
(left) more symmetric (right), as well as narrowing the range (note scales on
horizontal axes).

Projections: Low-Dimensional Summaries of High-Dimensional
Data

In geometry, a projection is a transformation taking points in a high-dimensional
space into corresponding points in a low-dimensional space. The most famil-
iar examples are maps and perspective drawings, both of which project three-
dimensional points onto two-dimensional surfaces. Maps use nonlinear pro-
jections, which introduce warping. Perspective is an example of a linear pro-
jection, which doesn’t warp but isn’t invertible. Linear projections are a lot
more common, and usually “projection” by itself means “linear projection”, so
from now on we’ll drop the “linear”, too.

Algebraically, projection is just matrix multiplication: if x is a p-dimensional
vector (i.e. a 1 x p matrix), a linear projection down into a k-dimensional vector
his

h =xw
where w is a p X k matrix of weights or loadings. Each component of h is a
linear combination of components of x. If we have n points we want to project,
then we make each point its own row, and get an n x p matrix X, and its image

1S

H=Xw

where w is the same as before.

The utility of a projection is going to depend on choosing the weights w.
Figure 2, for instance, are two different projections of a three-dimensional torus
onto two-dimensional planes. In one (where the projection is on to a plane nearly
perpendicular to the equator of the torus), the structure is almost completely
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Figure 2: Two different 2D projections of a 3D torus. Left: projecting on to a
plane nearly perpendicular to the equator; only faint traces of the structure are
visible. Right: projecting on to a plane nearly parallel to the equator.

obscured, and all we see is a tube of points.! In the other, where the projection
is on to a plane nearly parallel to the equator, where we at least see that it’s a
ring. One projection shows us that some combinations of features never happen;
the other obscures this.

If our data is high-dimensional (we have a lot of features), it would be very
helpful to have a low-dimensional summary, especially if it preserves, or takes
advantage of, any structure in the data set, or dependencies among the features.
In effect, we are trying to trade in our old features for a new, smaller set which
is built out of the old ones. There are a number of techniques which try to
produce these low-dimensional summaries in an automated way. Our torus is
really a two-dimensional surface, even though it’s in a three-dimensional space:
manifold learning methods try to automatically search for such structures.
Projection pursuit (see chapter 11 of the textbook) encompasses a lot of spe-
cific techniques for searching for projections which have good properties. Some
of them require us to pick k, the dimension of the projection, while others at-
tempt to pick the best k. One particular method for finding the best projection,
however, is by far the most common, robust and important.

Principal Components Analysis

Principal Component Analysis (PCA) is a method for maximizing the vari-
ance of the projected data. The output of PCA is a set of p orthogonal vectors

IThere are two circles at either end of the tube where the points are less dense than
elsewhere, which reflects the fact that the torus was hollow.



in the original p-dimensional feature space, the principal components. These
are ordered, from first to last. The first principal component is the direction
in the feature space along which the data has the most variance. The second
principal component is the direction orthogonal to the first component with the
most variance. The third principal component is the direction orthogonal to the
first two components with the most variance; and so on. To summarize the data,
we pick k < p and project the feature vectors on to the first k£ principal compo-
nents. (If & = p, then “projection” is just an invertible linear transformation,
some sort of rotation of the data.)
There are a number of reasons why PCA is useful.

e The principal components make sense as weighted combinations of the
original features. They take into account the correlations among those
features.

e The projections on to the principal components are uncorrelated.

e For the j*™ component, we know what fraction A; of the variance in the
original data it captures. (We will see next time where these numbers come
from.) Because the projections on to the components are uncorrelated,
we know that the first & components capture a fraction Z?Zl Aj of the
variance.

e No other projection on to k dimensions captures more of the variance.

PCA is generally most useful when the data have been scaled so each feature
has mean 0 and variance 1, but it’s not strictly necessary.

PCA has been rediscovered many times in many fields, so it is also known as
the Karhunen-Loéve transformation, the Hotelling transformation, the method
of empirical orthogonal functions, and singular value decomposition?. My de-
scription of PCA makes it sound like an optimization problem — search for the
first principal component, then the second, etc. One reason it’s been rediscov-
ered so often is that we can actually do the optimization analytically, without
any search. Next time, I'll define the sense in which PCA is optimal more ex-
actly, and show how to solve the optimization problem directly, with fast linear
algebra. For now, let’s finish by looking at the principal components of the car
data (Fig. 3).

The figure shows the projection of all the data points on to the first two prin-
cipal components (out of 10 in all); this accounts for 83% of the total variance.
The weight matrix is

hi h2
Price 0.29 0.43
MPG.highway -0.30 -0.05
EngineSize 0.35 0.06

2Strictly speaking, singular value decomposition is a matrix algebra trick which is used in
the most common algorithm for PCA.



Horsepower 0.30 0.49
Passengers 0.21 -0.68
Length 0.33 -0.10
Wheelbase 0.33 -0.26
Width 0.34 -0.07
Turn.circle 0.32 -0.08
Weight 0.37 0.01

The figure also shows, as red arrows, the projection of the original features on
to the first two principal components. Changing the value of a feature moves it
along that direction. Notice that all of the arrows point to the right (i.e., all of
the hy weights are positive) except for the MPG.highway feature, which points
left (and has a negative h; weight). This reflects the fact that all the features
are positively correlated with each other, except for MPG, which is negatively
correlated with everything else. Basically, the first component tells us whether
we’re looking at a big, expensive, gas-hungry car, or a small, cheap, fuel-efficient
car. Notice also that about half of the arrows point up (positive weights on hs)
and about half point down (negative weights on hs); this is a pretty common
pattern. Looking at the weightings, the second most important distinction, once
we control for over-all size, is between price, horsepower and engine size, and
number of passengers, fuel efficiency and length — i.e., is it a sports car or a
mini-van?3

3You can see in Figure 5 that the cars with the highest value of the second component are
the Corvette and the RX-7, and those with the lowest are the Chevy Astro and the Eurovan.
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Figure 3: Principal components of the cars data-set, with the projection of
the original variables onto the principal components. Notice the wider spread
(greater variance) along the first principal component (h1) than the second (h2).
Notice also how all of the original features have positive projections onto the
first principal component (their vectors point to the right), except for MPG,
which was negatively correlated with all the other features.
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Figure 4: Projection of cars onto the first two principal components, and their
classification (Type). Different regions in the plane correspond pretty cleanly
to different types, even though that attribute was not used to find the principal
components.
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Figure 5: Cars and their PCA projections.



