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Mathematics of Principal Components

There are several ways of deriving the principal components mathematically.
The simplest one is by finding the projection which maximizes the variance.
We could also do it by minimizing the information lost to projection, but that
is more algebraically demanding.

Throughout, assume that the data have been “centered”, so that every fea-
ture has mean 0. If we write the standardized data in a matrix X, where rows are
objects and columns are features, then XT X = nV, where V is the covariance
matrix of the data. (You should check that last statement!)

Maximizing Variance

We want to project our p-dimensional feature vectors onto a one-dimensional
line, which runs through the origin. We can specify the line by a unit vector
along it, ~w, and then the projection of a data vector ~xi on to the line is ~xi · ~w,
which is a scalar. (Check: this gives us the right answer when we project on to
one of the coordinate axes.) If we stack our n data vectors into an n×p matrix,
X, then the projections are given by Xw, which is an n× 1 matrix. The mean
of the projections will be zero, because the mean of the ~xi is zero. The variance
is

σ2
~w =

1
n

∑
i

(~xi · ~w)2

=
1
n

(Xw)T (Xw)

=
1
n
wT XT Xw

= wT XT X
n

w

= wT Vw

We want to chose a unit vector ~w so as to maximize σ2
~w. To do this, we need

to make sure that we only look at unit vectors — we need to constrain the
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maximization. The constraint is that ~w · ~w = 1, or wT w = 1. This needs a brief
excursion into constrained optimization.

We start with a function f(w) that we want to maximize. (Here, that
function is wT V w.) We also have an equality constraint, g(w) = c. (Here,
g(w) = wT w and c = 1.) We re-arrange the constraint equation so its right-
hand side is zero, g(w)− c = 0. We now add an extra variable to the problem,
the Lagrange multiplier λ, and consider u(w, λ) = f(w)+λ(g(w)−c). This is
our new objective function, so we differentiate with respect to both arguments
and set the derivatives equal to zero:

∂u

∂w
= 0 =

∂f

∂w
+ λ

∂g

∂w
∂u

∂λ
= 0 = g(w)− c

That is, maximizing with respect to λ gives us back our constraint equation,
g(w) = c. At the same time, when we have the constraint satisfied, our new ob-
jective function is the same as the old one. (If we had more than one constraint,
we would just need more Lagrange multipliers.)

For our projection problem,

u = wT Vw − λ(wT w − 1)
∂u

∂w
= 2Vw − 2λw = 0

Vw = λw

Thus, desired vector w is an eigenvector of the covariance matrix V, and
the maximizing vector will be the one associated with the largest eigenvalue
λ. This is good news, because finding eigenvectors is something which can be
done comparatively rapidly (see Principles of Data Mining p. 81), and because
eigenvectors have many nice mathematical properties.

V is a p × p matrix, so it will have p different eigenvectors, which will
be orthogonal to one another. The second principal component, remember, is
the direction with the most variance which is orthogonal to the first principal
component — that is, it will be the eigenvector of V corresponding to the second
largest eigenvalue, and so on. Because it is orthogonal to the first eigenvector,
their projections will be uncorrelated. In fact, projections on to all the principal
components are uncorrelated with each other. If we use k principal components,
our weight matrix w will be a p×k matrix, where each column will be a different
eigenvector of the covariance matrix V. The eigenvalues will give the share of
the total variance described by each component.

Minimizing Information Loss

When we project our p dimensional feature vectors on to a k dimensional surface,
X 7→ Xw, we lose some information, because multiple vectors can project to
the same point. If we have a k-dimensional vector h, we can try to undo
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the projection, getting hwT as the image in the original feature space. The
difference between X and hwT is the residual. If we try to minimize the sum of
the squared residuals for each point, we find that the projection which achieves
this is PCA. The fraction of the total variance accounted for by the first k
principal components is the R2 of the projection (just like with a regression).
The error is measured by 1−R2.

Interpreting the arrows

Last time, I drew a projection plot where, in addition to the data, I projected
unit vectors along each of the original features. This helped us figure out what
the principal components meant, and also told us how changing the attribute
values will change the projections.

We can also do this in reverse. If we take a projected point, we can estimate
its attribute values by looking at its position along the arrows. (That is, we can
find the image of the projected point from the arrows.) This estimate will be
good if R2 is large. Similarly, the angles between the arrows give us an estimate
of the correlation between features. If the angle is θ, then the correlation is
roughly cos θ. This is exact when R2 = 1, and gets worse as R2 gets smaller.

Interpreting a PCA Plot

We can now pull everything together to give a short recipe for how to interpret
a PCA plot.

To begin with, find the first two principal components of your data. (I say
“two” only because that’s what you can plot; see below.) It’s generally a good
idea to standardized all the features first, but not strictly necessary.

Coordinates Using the arrows, summarize what each coordinate (h1 and h2)
is measuring. For the cars data, h1 measures “size” and h2 measures
“sporty”.

Correlations For many datasets, the arrows cluster into groups of highly cor-
related attributes. Describe these attributes. Also determine the overall
level of correlation (given by the R2 value).

Clusters Clusters indicate a preference for particular combinations of attribute
values. Summarize each cluster by its prototypical member. For the cars
data, the vans form a cluster.

Funnels Funnels are wide at one end and narrow at the other. They happen
when one dimension affects the variance of another, orthogonal dimen-
sion. Thus, even though the dimensions are uncorrelated (because they
are perpendicular) they still affect each other. The cars data has a funnel,
showing that small cars are similar in sportiness, while large cars are more
varied.
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Voids Voids are areas inside the range of the data which are unusually unpop-
ulated. A permutation plot is a good way to spot voids. (Randomly
permute the data in each column, and see if any new areas become occu-
pied.) For the cars data, there is a void of sporty cars which are very small
or very large. This suggests that such cars are undesirable or difficult to
make.

Projections on to the first two or three principal components can be visu-
alized; however they may not be enough to really give a good summary of the
data. Usually, to get an R2 of 1, you need to use all p principal components.1

How many principal components you should use depends on your data, and how
big an R2 you need. In some fields, you can get better than 80% of the vari-
ance described with just two or three components. (For instance, Congressional
voting is at best two-dimensional.) A useful device is to plot 1− R2 versus the
number of components, and keep extending the curve it until it flattens out.

1The exception is when some of your features are linear combinations of the others, so that
you don’t really have p different features.
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