
Lecture 9: Evaluating Predictive Models

36-350: Data Mining

October 9, 2006

So far in the course, we have largely been concerned with descriptive models,
which try to summarize our data in compact and comprehensible ways, with
information retrieval, etc. Now, in the second half, we are going to focus on
predictive models, which attempt to foresee what will happen with new data.

We have already seen an example of this in classification problems: algo-
rithms like the nearest-neighbor method try to guess which classes new data
belong to, based on old data. You are also familiar with linear regression, which
can be used both to describe trends in existing data, and to predict the value
of the dependent variable on new data. In both cases, we can gauge how well
the predictive model does by looking at its accuracy, or equivalently at its
errors. For classification, the usual measure of error is the fraction of cases
mis-classified, called the mis-classification rate or just the error rate. For
linear regression, the usual measure of error is the sum of squared errors, or
equivalently 1 − R2, and the corresponding measure of accuracy is R2. In the
method of maximum likelihood, the accuracy is just the likelihood value, and
the error is conventionally the negative log-likelihood.

What we would like, ideally, is a predictive model which has zero error on
future data. We basically never achieve this, partly because our models are
imperfect and partly because the world is just noisy and stochastic, and even
the ideal model will not have zero error all the time. Instead, we would like to
minimize the expected error, or risk, on future data.

If we didn’t care about future data, this would be easy. We have various
possible models, each with different parameter settings, conventionally written
θ. We also have a collection of data x1, x2, . . . xn ≡ x. For each possible model,
then, we can compute the error on the data, L(x, θ), called the in-sample loss
or the empirical risk. The simplest strategy is then to pick the model, the
value of θ, which minimizes the in-sample loss. This means picking the classifier
with the lowest in-sample error rate, or the regression which minimizes the sum
of squared errors, or the likelihood-maximizing parameter value — what you’ve
usually done in statistics courses so far.

There is however a potential problem here, because L(x, θ) is not what we
really want to minimize. That is E [L(X, θ)], the expected loss on new data drawn
from the same distribution. This is also called the risk, as I said, or the out-
of-sample loss, or the generalization error (because it involves generalizing
from the old data to new data). The in-sample loss equals the risk plus sampling
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noise:
L(x, θ) = E [L(X, θ)] + ε(θ)

Here ε(θ) is a random term which has mean zero, and represents the effects of
having only a finite data sample, rather than the complete probability distribu-
tion. (I write it ε(θ) as a reminder that different models are going to be effected
differently by the same sampling fluctuations.) The problem, then, is that the
model which minimizes the in-sample loss could be one with good generalization
performance (E [L(X, θ)] is small), or it could be one which got very lucky (ε(θ)
was large and negative).

To see how this can matter, consider choosing among different models with
different degrees of complexity — also called model selection. In particular,
consider Figure 1. Here, I have fitted ten different models — ten different
polynomials — to the same data set. The higher-order polynomials give, visually
at least, a significantly better fit. This is confirmed by looking at the residual
sum of squares.

degree RSS
1 17.19
2 16.62
3 16.02
4 14.53
5 13.54
6 13.01
7 12.25
8 10.80
9 9.77
10 8.65

Since there are only twenty data points, if I continued this out to polynomials of
degree twenty, I could get the residual sum of squares down to zero, apparently
perfect prediction.

The problem comes when we take these models and try to generalize to new
data, such as an extra 200 data points drawn from exactly the same distribution
(Figure 2).

degree Sum of Squared Errors
1 453.68
2 455.28
3 475.53
4 476.36
5 484.18
6 486.97
7 488.77
8 518.39
9 530.25
10 545.37
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Figure 1: Fits of polynomials from degree 1 to 10 to twenty data points (X is
standard Gaussian, Y = −0.5X+ another standard Gaussian.
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Figure 2: Predictions of the polynomial models on 200 new data points.

What’s going on here is that the more complicated models — the higher-order
polynomials, with more terms and parameters — were not actually fitting the
generalizable features of the data. Instead, they were fitting the sampling noise,
the accidents which don’t repeat. That is, the more complicated models over-
fit the data. In terms of our earlier notation, ε is bigger for the more flexible
models. The model which does the best on new data is the linear model, be-
cause, as it happens the true model here is linear. If the true model had been,
say, quadratic, then we should have seen the second-degree polynomials do best,
and the linear models would have under-fit the data, because the (real, gener-
alizable) curvature would have been missed.

After bad data, over-fitting may well be the single biggest problem con-
fronting data mining. People have accordingly evolved many ways to combat
it.
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Big Data The simplest approach to dealing with over-fitting is to hope that it
will go away. As we get more and more data, the law of large numbers (and other
limit theorems) tell us that it should become more and more representative of the
true data-generating distribution, assuming there is one. Thus, ε, the difference
between the empirical risk and the generalization risk, should grow smaller and
smaller. If you are dealing with a lot of data, you can hope that ε is very small,
and that minimizing the in-sample loss will give you a model which generalizes
almost as well as possible. Unfortunately, if your model is very flexible, “lots of
data” can be exponentially large.

Penalization The next bright idea is to say that if the problem is over-flexible
models, we should penalize flexibility. That is, instead of minimizing L(x, θ),
minimize L(x, θ)+λg(θ), where g(θ) is some kind of indication of the complexity
or flexibility of θ, say the number of parameters, and λ is our trade-off factor.
Standard linear regression implements a scheme like this in the form of “adjusted
R2.” It can work very well, but the trick is in choosing the penalty term; the
number of parameters is often used but often not appropriate.

Cross-Validation The most reliable trick, in many ways, is related to what
I did above. Divide your data at random into two parts. Call the first part the
training set, and use it to fit your models. Then evaluate their performance
on the other part, the testing set. Because you divided the data up randomly,
the performance on the test data should be an unbiased estimate of the general-
ization performance. (But, unbiased doesn’t necessarily mean “close”.) There
are many wrinkles here, some of which we’ll see, like multi-fold cross-validation
— repeat the division q times, and chose the model which comes out best on
average over the q different test sets.
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