Yet More Clustering

36-350: Data Mining
19 September 2008
Last time...

- K-means: divide into k clusters to reduce within-cluster variance * cluster size
- Ward’s method: start with each point in own cluster, cluster the clusters
Ward’s method applied to the images from earlier: ocean, tigers, flowers

Jump in merging cost suggests 3 clusters - almost exactly right ones, too (but thinks flower5 is a tiger)
Merging cost vs. # of clusters
Rule of thumb: stop when merging costs go way up
Here: 3 clusters (or 6 or 8...)
Minimizing the mean distance from the cluster center tends to make spheres, which can be silly.

k-Means

Ward’s

note how Ward’s is less balanced
Single-link clustering

1. Start with every point in its own cluster
2. Calculate gaps between every pair of clusters = distance between 2 closest points in each cluster
3. Merge clusters with smallest gap
Examples where single-link doesn’t work so well

k-Means | Ward’s | Single-link

[Graph showing clusters for k-Means, Ward’s, and Single-link methods]
How many clusters?

- Can always improve sum-of-squares by adding more clusters
- Can generally improve any criterion by adding more clusters
- It seems silly to say that each point is in its own cluster
Heuristics

• Merging cost: if reducing the number of clusters gives a big hit in performance, stop
 • Why?
 • What’s a big hit?
• Add a cost-per-cluster
 • Why that cost?
Missing from the heuristics

• Clusters are good if the data really do fall into different categories with different characteristics; if not, not

• Summarizing the training data isn’t what we want!
Real criteria

• External validity: Does knowing the cluster predict variables other than the ones used to determine cluster membership?

• If so, is it really the cluster, or one of those variables?

• Generalization to new data
Generalization

- The model *generalizes* if it performs about as well on new data from the same source as it did on the training data.
- This notion really only applies to predictive models.
- Clustering tools we’ve seen hardly give us predictions.
Faking prediction

- Look at sum of squares with old cluster centers on new data
- Look at tree structure on new data: leaves will be different, but how much of the tree shape changes? Does the merging-cost graph look the same?
- How much do things change with a little new data added in to the old?
Cross-validation

- Randomly divide the data into training and testing sets, say 90/10
- Fit the model on the training set and evaluate on the testing set
- Repeat several times, say 10
- Average the results
Reification

- Treating your idea as an independently-existing thing (*res*)
- Sometimes a good idea (bacteria), sometimes not (zodiac sign)
- Overwhelming temptation with clustering
 - especially once you add names
To play with

- Go to http://yawyl.claritas.com/ and figure out what they are doing
- Should you believe it?