
Homework 1

36-350: Data Mining

Due at start of class, Friday, 4 September 2009

1. (a) What is the bag-of-words representation of the sentence “To be or
not to be”?

(b) Suppose we search for the above sentence via the keyword “be”.
What is the bag-of-words representation for this query, and what
is its Euclidean distance from the sentence?

(c) How would inverse-document-frequency (IDF) weighting help when
making a Web query for “The Principles of Data Mining”?

(d) Describe a simple text search that can’t be done using a bag-of-words
representation (no matter what distance measure is used). “Simple”
means no actual understanding of English is required.

2. (a) What is the Euclidean distance between each of the vectors (1, 0, 0),
(1, 4, 5), and (10, 0, 0)?

(b) Divide each vector by its sum. How do the relative distances change?

(c) Divide each vector by its Euclidean length. How do the relative
distances change?

(d) Suppose we’re using the bag-of-words representation for similarity
searching with a Euclidean metric. Describe how the previous parts
of the question illustrate a potential problem if we do not normalize
for document length.

(e) Consider the conventional searching scheme where the user picks a set
of keywords and the system returns all documents containing those
keywords. Describe how the previous parts of the question illustrate
a potential problem with this type of search.

1



The remaining questions are this week’s computer exercise. They use
some a some pre-written R functions in a file called 01.R, available from
Blackboard or from http://www.stat.cmu.edu/~cshalizi/350, and a
fragment of the Times corpus, nyt corpus.zip. See the end of this docu-
ment for some notes about the functions. Also, please read the “Minimal
Advice on Programming” handout (linked to in both places), if you haven’t
already — especially the part on commenting your code, and the part on
how to complain about this assignment.

3. (a) Create document vectors for each of the stories in the music and art
folders. Give the commands you used.
Note: Feel free to use the read.directory function in 01.R if you
comment it.

(b) What command would you use to extract the 37th word of story
number 1595645 in art? (That word is “experiencing”.) Give a
command to count the number of times the word “the” appears in
that story. (There are at least two ways to do this. The correct
answer is 103.)

(c) Give the commands you would use to construct a bag-of-words data-
frame from the document vectors for the art and music stories. Hint:
consider lapply.

(d) Create distance matrices from this data frame for (a) the straight
Euclidean distance, (b) the distance with word-count normalization
and (c) the distance with vector-length scaling, and then for all three
again with inverse-document-frequency weighting. Give the com-
mands you use.

(e) For each of the six different difference measures, what is the average
distance between stories in the same category and between stories in
different categories? (Include the R command you use to compute
this — don’t do it by hand!)

(f) Create multidimensional scaling plots for the different distances, and
describe what you see. Include the code you used, the plots, and
explanations for the code.

4. Comment the sq.Euc.dist function — that is, go over it and explain, in
English, what it each does, and how the lines work together to calculate
the function.

5. (a) Explain what the “cosine distance” has to do with cosines.

(b) Calculate, by hand, the cosine distances between the three vectors in
question 2.

(c) Write a function to calculate the matrix of cosine distances (really,
similarities) between all the vectors in a data-frame. Hint: you may
want to use the distances function in 01.R. Check that your function
agrees with your answer to the previous part.

2

http://www.stat.cmu.edu/~cshalizi/350


6. Write a function to find the document which best matches a given query
string. The function should take two arguments:

• The query, as a single character string

• The bag-of-words matrix

and return the row number corresponding to the best-matching document.
You can pick the distance measurement, but you should include inverse
document-frequency weighting.

Hint 1: The first step should be to turn the query into a bag-of-words
vector. Make sure it’s comparable to the bag-of-words matrix!

Hint 2: Look at the nearest.points function in 01.R.

Hint 3: Test that if the “query” one of the original documents, that’s
the document which is returned. Do this for at least two of the original
documents.

3



Some Notes on the Functions

XML The stories from the Times corpus are in a language called XML. You
don’t have to know it, but you do need to install and load the XML package from
CRAN.

Reading documents into R The function read.doc reads documents into
R, as follows:

music.1 = read.doc("music//0023931.xml")

This loads the file 0023931.xml in the directory music, and then turns the
text of the news story into a vector of word instances in the order in which
they appeared in the story. read.doc removes the annotations, removes all
punctuation, shifts all letters to lower case, and turns all numbers into the
pound sign #. You can access the nth word as music.1[n].

table(music.1) creates the bag-of-words representation from the vector.
The table function is an extremely useful part of the basic R package, and you
should familiarize yourself with it.

Creating a Bag-of-Words Data-Frame The function make.BoW.frame con-
verts a list of bag-of-word vectors into a data frame, with one row for each
document and one column for each word. By default, words which appear in
only a single document are removed from the unified list of columns; this can
be suppressed by running it with the argument remove.singletons=FALSE.

Normalization The functions div.by.sum and div.by.euc.length normal-
ize an array by the sum of each row and by the Euclidean length of each row,
respectively. For instance,

x = div.by.sum(docs)

would create a new data-frame, x, in which each row of docs was normalized
by the sum of entries in that row.

Computing distances The function distances computes a matrix of dis-
tances between the different bag-of-word vectors in a data frame.

d = distances(x)

creates a new matrix, d, where d[i,j] is the distance between x[i,] and x[j,].

Multidimensional scaling There are three standard multi-dimensional scal-
ing functions in R, cmdscale, which is part of the default package stats, and
isoMDS and sammon, which are part of the package MASS. See their help files for
details.

4


