
Finding Informative Features

36-350: Data Mining

4 September 2009

Readings: David P. Feldman, “Introduction to Information Theory”, chapter
1 (http://hornacek.coa.edu/dave/Tutorial/)

Principles of Data Mining, sections 10.1, 10.2, 10.6 and 10.8

As I mentioned last time, everything we have learned how to do so far —
similarity searching, nearest-neighbor and prototype classification, multidimen-
sional scaling — relies on our having a vector of features or attributes for each
object in data set. (The dimensionality of vector space equals the number of
features.) The success of our procedures depends on our choosing good features,
but I’ve said very little about how to do this. In part this is because designing
good representations inevitably depends on domain knowledge. However, once
we’ve picked a set of features, they’re not all necessarily equally useful, and
there are some tools for quantifying that.

The basic idea, remember, is that the features are the aspects of the data
which show up in our representation. However, they’re not what we really
care about, which is rather something we don’t, or can’t, directly represent,
for instance the class of the object (is it a story about art or about music? a
picture of a flower or a tiger?). We use the observable features to make a guess
(formally, an inference) about the unobservable thing, like the class. Good
features are ones which let us make better guesses — ones which reduce our
uncertainty about the unobserved class.

Good features are therefore informative, discriminative or uncertainty-
reducing. This means that they need to differ across the different classes, at
least statistically. I said before that the number of occurrences of the word “the”
in an English document isn’t a useful feature, because it occurs about as often
in all kinds of text. This means that looking at that count leaves us exactly as
uncertain about which class of document we’ve seen as we were before. Similarly,
the word “cystine” is going to be equally rare whether the topic is art or music,
so it’s also uninformative. On the other hand, the word “rhythm” is going to
be more common in stories about music than in ones about art, so counting its
occurrences is going to reduce our uncertainty. The important thing is that the
distribution of the feature differ across the classes.
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Figure 1: Entropy of a binary variable as a function of the probability of (either)
class value. Note that it is symmetric around p = 1/2, where it is maximal.

1 Entropy and Information

Information theory is one way of trying to make precise these ideas about un-
certainty, discrimination, and reduction in uncertainty. (Information theory has
many other uses, and is at once one of the great intellectual achievements of the
twentieth century and a key technology of the world around us. But we’ll just
look at this aspect.) X is some feature of the data in our representation, and x
is a particular value of the feature. How uncertain are we about X? Well, one
way to measure this is the entropy of X:

H[X] = −
∑

x

Pr (X = x) log2 Pr (X = x)

The entropy, in bits, equals the average number of yes-or-no questions we’d
have to ask to figure out the value of X. (This is also the number of bits of
computer memory needed to store the value of X.) If there are n possible
values for X, and they are all equally likely, then our uncertainty is maximal,
and H[X] = log2 n, the maximum possible value. If X can take only one value,
we have no uncertainty, and H[X] = 0.

2



Similarly, our uncertainty about the class C, in the absence of any other
information, is just the entropy of C:

H[C] = −
∑

c

Pr (C = c) log2 Pr (C = c)

Now suppose we observe the value of the feature X. This will, in general, change
our distribution for C, since we can use Bayes’s Rule:

Pr (C = c|X = x) =
Pr (C = c,X = x)

Pr (X = x)
=

Pr (X = x|C = c)
Pr (X = x)

Pr (C = c)

Pr (X = x) tells us the frequency of the value x is over the whole population.
Pr (X = x|C = c) tells us the frequency of that value is when the class is c. If
the two frequencies are not equal, we should change our estimate of the class,
making it larger if that feature is more common in c, and making it smaller if
that feature is rarer. Generally, our uncertainty about C is going to change,
and be given by the conditional entropy:

H[C|X = x] = −
∑

c

Pr (C = c|X = x) log2 Pr (C = c|X = x)

The difference in entropies, H[C]−H[C|X = x], is how much our uncertainty
about C has changed, conditional on seeing X = x. This change in uncertainty
is realized information:

I[C;X = x] = H[C]−H[C|X = x]

Notice that the realized information can be negative. For a simple example,
suppose that C is “it will rain today”, and that it normally rains only one day
out of seven. Then H[C] = 0.59 bits. If however we look up and see clouds (X =
cloudy), and we know it rains on half of the cloudy days, H[C|X = cloudy] = 1
bit, so our uncertainty has increased by 0.41 bits.

We can also look at the expected information a feature gives us about the
class:

I[C;X] = H[C]−H[C|X] = H[C]−
∑

x

Pr (X = x)H[C|X = x]

The expected information is never negative. In fact, it’s not hard to show that
the only way it can even be zero is if X and C are statistically independent
— if the distribution of X is the same for all classes c,

Pr (X|C = c) = Pr (X)

It’s also called the mutual information, because it turns out that H[C] −
H[C|X] = H[X] −H[X|C]. (You might want to try to prove this to yourself,
using Bayes’s rule and the definitions.)
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1.1 Example: How Much Do Words Tell Us About Top-
ics?

Let’s look at this for the documents from homework 1. We’ll presume that
nyt.frame is a data-frame containing the bag-of-words vectors for the stories,
as we made them in the homework, with all of then art stories going before the
music stories. It will be convenient to add the labels themselves as an extra
column in the data frame:

> dim(nyt.frame)
[1] 102 4431
> class.labels = c(rep("art",57),rep("music",45))
> nyt.frame = data.frame(class.labels=as.factor(class.labels),nyt.frame)
> dim(nyt.frame)
[1] 102 4432

(Remember that factor is R’s data type for categorical variables.)
C will be the class label, so its two possible values are “art” and “music”. For

our feature X, we will use whether or not a document contains the word “paint”,
i.e., whether the “paint” component of the bag-of-words vector is positive or
not; X = 1 means the word is present, X = 0 that it’s absent.1 We can do the
counting by hand, and get

x
c “paint” not “paint”

art 12 45
music 0 45

Let’s calculate some entropies. We don’t want to do this by hand, so let’s write
a function, entropy, to do so (Example 1).

Notice that we can either give the entropy function a vector of probabilities,
or a vector of counts, which it will normalize to probabilities

> entropy(c(0.5,0.5))
[1] 1.000000
> entropy(c(1,1))
[1] 1.000000
> entropy(c(45,45))
[1] 1.000000

There are 57 art stories and 45 music stories, so:

> entropy(c(57,45)
[1] 0.9899928

In other words, H[C] = 0.99. Of course in general we don’t want to put in the
numbers like that; this is where the class.labels column of the data frame is
handy:

1X is thus an indicator variable.
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# Calculate the entropy of a vector of counts or proportions
# Inputs: Vector of numbers
# Output: Entropy (in bits)
entropy <- function(p) {

# Assumes: p is a numeric vector
if (sum(p) == 0) {
return(0) # Case shows up when calculating conditional

# entropies
}
p <- p/sum(p) # Normalize so it sums to 1
p <- p[p > 0] # Discard zero entries (because 0 log 0 = 0)
H = -sum(p*log(p,base=2))
return(H)

}

Code Example 1: The entropy function.

> table(nyt.frame[,"class.labels"])
art music
57 45

> entropy(table(nyt.frame[,"class.labels"]))
[1] 0.9899928

From the 2× 2 table above, we can calculate that

• H[C|X = “paint”] =entropy(c(12,0)) = 0

• H[C|X = not “paint”] =entropy(c(45,45)) = 1.0

• Pr (X = “paint”) = 12/102 = 0.12

• I[C;X] = H[C] − (Pr (X = 1)H[C|X = 1] + Pr (X = 0)H[C|X = 0]) =
0.11

In words, when we see the word “paint”, we can be certain that the story
is about art (H[C|X = “paint”] = 0 bits). On the other hand, when “paint” is
absent we are as uncertain as if we flipped a fair coin (H[C|X = not “paint”] =
1.0 bits), which is actually a bit more uncertainty than we’d have if we didn’t
look at the words at all (H[C] = 0.99 bits). Since “paint” isn’t that common a
word (Pr (X = “paint”) = 0.12), the expected reduction in uncertainty is small
but non-zero (I[C;X] = 0.11).

If we want to repeat this calculation for another word, we don’t want to do all
these steps by hand. It’s a mechanical task so we should be able to encapsulate
it in more code (Code Example 2).

If this works, it should agree with what we calculated by hand above:

> word.mutual.info(matrix(c(12,0,45,45),nrow=2))
[1] 0.1076399

5



# Get the expected information a word’s indicator gives about a
# document’s class

# Inputs: array of indicator counts
# Calls: entropy()
# Outputs: mutual information
word.mutual.info <- function(counts) {
# Assumes: counts is a numeric matrix
# get the marginal entropy of the classes (rows) C
marginal.entropy = entropy(rowSums(counts))
# Get the probability of each value of X
probs <- colSums(counts)/sum(counts)
# Calculate the entropy of each column
column.entropies = apply(counts,2,entropy)
conditional.entropy = sum(probs*column.entropies)
mutual.information = marginal.entropy - conditional.entropy
return(mutual.information)

}

Code Example 2: The word.mutual.info function. apply(foo,2,bar) ap-
plies the function bar to each column of the array foo and collects the results
in a vector; changing the middle argument to 1 applies bar to the rows of foo.
See help(apply).

which is exactly what the manual calculation gave before rounding off to two
significant figures. (With about a hundred examples, it’s nonsense to calculate
anything to one part in a million.)

Now we can calculate the information a word gives us about a category so
long as we can get indicator counts. Doing this manually is tedious, so again,
let’s automate (Code Example 3).

Again, let’s double-check this:

> word.class.indicator.counts(nyt.frame,"paint")
[,1] [,2]

art 12 45
music 0 45

Putting the pieces together,

> word.mutual.info(word.class.indicator.counts(nyt.frame,"paint"))
[1] 0.1076399

2 Finding Informative Features

Here’s one information-theoretic procedure for finding the important words.

1. Count how often each class c = 1, 2 . . .K appears.
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# Count how many documents in each class do or don’t contain a
# word
# Presumes that the data frame contains a column, named
# "class.labels", which has the classes labels; may be more
# than 2 classes

# Inputs: dataframe of word counts with class labels (BoW),
# word to check (word)

# Outputs: table of counts
word.class.indicator.counts <- function(BoW,word) {
# What are the classes?
classes <- levels(BoW[,"class.labels"])
# Prepare a matrix to store the counts, 1 row per class, 2 cols
# (for present/absent)
counts <- matrix(0,nrow=length(classes),ncol=2)
# Name the rows to match the classes
rownames(counts) = classes
for (i in 1:length(classes)) {
# Get a Boolean vector showing which rows belong to the class
instance.rows = (BoW[,"class.labels"]==classes[i])
# sum of a boolean vector is the number of TRUEs
n.class = sum(instance.rows) # Number of class instances
present = sum(BoW[instance.rows,word] > 0)
# present = Number of instances of class containing the word
counts[i,1] = present
counts[i,2] = n.class - present

}
return(counts)

}

Code Example 3: The word.class.indicator.counts function.
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2. For each word, make the K × 2 table of classes by word indicators.

3. Compute the mutual information in each table.

4. Return the m most-informative words.

This ranks words by how informative it is to see them at all in the document.
We could also look at how much information we get from the number of times
they appear in the document — the table we build in step two would no longer
necessarily by K × 2, as the number of columns would depend on the number
of different values for that word’s feature.

The info.bows function (Code Example 4) does steps (1)–(3) of the ranking
procedure.

# Calculate realized and expected information of word indicators
# for classes
# Assumes: one column of the data is named "class.labels"

# Inputs: data frame of word counts with class labels
# Calls: word.class.indicator.counts(), word.realized.info(),
# word.mutual.info()

# Output: two-column matrix giving the reduction in class entropy
# when a word is present, and the expected reduction from
# checking the word

infos.bow <- function(BoW) {
lexicon <- colnames(BoW)
# One of these columns will be class.labels, that’s not a
# lexical item
lexicon <- setdiff(lexicon,"class.labels")
vocab.size = length(lexicon)
word.infos <- matrix(0,nrow=vocab.size,ncol=2)
# Name the rows so we know what we’re talking about
rownames(word.infos) = lexicon
for (i in 1:vocab.size) {
counts <- word.class.indicator.counts(BoW,lexicon[i])
word.infos[i,1] = word.realized.info(counts)
word.infos[i,2] = word.mutual.info(counts)

}
return(word.infos)

}

Code Example 4: The info.bows function

This does two calculations for each word: how much the entropy of the class
is reduced when the word is present, and how much the entropy is reduced on
average by checking the word’s indicator (the mutual information). I have not
given code for the function for the first calculation, word.realized.info, but
you can figure it out from what I have said.
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I[C;X] (bits) I[C;X = 1] (bits)
art 0.32 abandoned 0.99
painting 0.24 abc 0.99
museum 0.23 abroad 0.99
gallery 0.21 abstractions 0.99
artists 0.21 academic 0.99
paintings 0.15 accents 0.99
evening 0.15 accept 0.99
orchestra 0.14 acclaimed 0.99
music 0.13 accounted 0.99
artist 0.13 achievement 0.99

Table 1: Most informative words for discriminating between art and music. Left:
ranked by expected information, I[C;X]. Right: ranked by realized information
when the word is present, I[C;X = 1].

Table 1 shows which words’ presence or absence in a document have the
most information for the art/music classification task. Figure 2 plots this for
all 4431 distinct words in the data.

Of course, nothing in this really hinges on our features being words; we could
do the same thing for colors in a bag-of-colors representation of pictures, etc.

Calculating the expected information is actually very similar to performing
a χ2 test for independence. (Remember that mutual information is 0 if and only
if the two variables are statistically independent.) In fact, if the sample size is
large enough, the samples are IID, and the variables really are independent,
then the sample mutual information has a χ2 distribution (Kullback, 1968).2

2.1 Combinations

All of this is just looking at one feature at a time, so it ignores the possibility that
certain combinations of features are useful, or that some features are redundant
given others. We will look at this sort of interaction in the next lecture.

Further Reading

Information theory appeared almost fully formed in Shannon (1948), a classic
paper which is remarkably readable. The best available textbook on informa-
tion theory, covering its applications to coding, communications, prediction,
gambling, the foundations of probability, etc., is Cover and Thomas (1991).
Poundstone (2005) is a popular book about how information theory connects to
gambling and the stock market; Poundstone (1984) explains how it connects to
fundamental aspects of physical science, as does Wiener (1954).

2In general, working out the bias, standard error, and sampling distribution of mutual
information estimates is not easy. See, for instance, Victor (2000); Paninski (2003).
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info.matrix <- info.bows(nyt.frame)
plot(0,xlim=range(info.matrix[,1]),ylim=range(info.matrix[,2]),

xlab="Realized information",ylab="Expected information",type="n")
text(info.matrix[,1],info.matrix[,2],rownames(info.matrix),cex=0.5)

Figure 2: How much do we reduce our uncertainty about whether a Times
story is about art or music by checking for various words? The horizontal
axis (“realized information”) shows the reduction in entropy when the word is
present. The vertical axis (“expected information”) shows the average reduction
in entropy from checking for the word. Notice that the two values tend to rise
together, but that the expected information tends to be smaller than the realized
information (the scales on the two axes are different). The code beneath the
figure shows how it was produced.
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Exercises

These are for you to think about, rather than to hand in.

1. How would you reproduce Figure 1?

2. Looking at Figure 2, why does expected information tend to generally
increase with realized information?

3. Why does expected information tend to be smaller than realized informa-
tion?

4. Why are so many words vertically aligned at the right edge of the plot?

5. Write word.realized.info.

6. What code would you have to change to calculate the information the
number of appearances of a word gives you about the class?

7. Read help(order). How would you reproduce Table 1?
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