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1 From Principal Components to Factor Analy-
sis

There are two ways to go from principal components analysis to factor analysis
— two motivating stories.

1.1 Measurement Error

Suppose that the numbers we write down as our observations aren’t altogether
accurate — that our numbers are the true variables plus some measurement
noise. (Or, if we’re not making the measurements ourselves but just taking
numbers from some database, that whoever created the database wasn’t able
to measure things perfectly.) PCA doesn’t care about this — it will try to
reproduce true-value-plus-noise from a small number of components. But that’s
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kind of weird — why try to reproduce the noise?1 Can we do something like
PCA, where we reduce a large number of features to additive combinations of
a smaller number of variables, but which allows for noise?

The simplest model, starting from PCA, would be something like this. Each
object or record has p features, so Xij is the value of feature j for object i.
As before, we’ll center all the observations (subtract off their mean). We now
postulate that there are q factor variables, and each observation is a linear
combination of factor scores Fir plus noise:

Xij = εij +
k∑
r=1

Firwrj (1)

The weights wrj are called the factor loadings of the observable features; they
say how much feature j changes, on average, in response to a one-unit change
in factor score r. Notice that we are allowing each feature to go along with
more than one factor (for a given j, wrj can be non-zero for multiple r). This
would correspond to our measurements running together what are really distinct
variables.

Here εij is as usual the noise term for feature j on object i. We’ll assume
this has mean zero and variance ψj — i.e., different features has differently-sized
noise terms. The ψj are known as the specific variances, because they’re
specific to individual features. We’ll further assume that E [εijεlm] = 0, unless
i = l, j = m — that is, each object and each feature has uncorrelated noise.

We can also re-write the model in vector form,
~Xi = ~εi + ~Fiw (2)

with w being a q × p matrix. If we stack the vectors into a matrix, we get

X = ε+ Fw (3)

This is the factor analysis model. The only (!) tasks are to estimate the factor
loadings w, the factor scores F, and the specific variances ψj .

A common question at this point is, or should be, where does the model (1)
come from? The answer is, we make it up. More formally, we posit it, and all
the stuff about the distribution of the noise, etc., as a hypothesis. All the rest
of our reasoning is conditional, premised on the assumption that the posited
hypothesis is in fact true. It is unfortunately too common to find people who
just state the hypothesis in a semi-ritual manner and go on. What we should
really do is try to test the hypothesis, i.e., to check whether it’s actually right.
We will come back to this.

1.2 Preserving correlations

PCA aims to preserve variance, or (what comes to the same thing) minimize
mean-squared residuals (reconstruction error). But it doesn’t preserve corre-
lations. That is, the correlations of the features of the image vectors are not

1One reason would be if we’re not sure what’s noise, or if what seems to be noise for one
purpose is signal for something else. But let’s press onward.
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the same as the correlations among the features of the original vectors (unless
q = p, and we’re not really doing any data reduction). We might value those
correlations, however, and want to preserve them, rather than the variance.2

That is, we might ask for a set of vectors whose image in the feature space will
have the same correlation matrix as the original vectors, or as close to the same
correlation matrix as possible while still reducing the number of dimensions.

This also leads to the factor analysis model, as we’ll see, but we need to take
a somewhat circuitous root to get there.

1.3 Roots of Factor Analysis in Causal Discovery

The roots of factor analysis go back to work by Charles Spearman just over a
century ago (Spearman, 1904); he was trying to discover the hidden structure of
human intelligence. His observation was that schoolchildren’s grades in different
subjects were all correlated with each other. He went beyond this to observe a
particular pattern of correlations, which he thought he could explain as follows:
the reason grades in math, English, history, etc., are all correlated is performance
in these subjects is all correlated with something else, a general or common
factor, which he named “general intelligence”, for which the natural symbol was
of course g or G.

Put in a form like Eq. 1, Spearman’s model becomes

Xij = εij +Giwj (4)

(Since there’s only one common factor, the factor loadings wj need only one
subscript index.) If we assume that the features and common factor are all
centered to have mean 0, and that there is no correlation between εij and Gi
for any j, then the correlation between the jth feature, X·j , and G is just wj .

Now we can begin to see how factor analysis reproduces correlations. Under
these assumptions, it follows that the correlation between the jth feature and
the lth feature, call that ρjl, is just the product of the factor loadings:

ρjl = wjwl (5)

Up to this point, this is all so much positing and assertion and hypothesis.
What Spearman did next, though, was to observe that this hypothesis carried
a very strong implication about the ratios of correlation coefficients. Pick any

2Why? Well, originally the answer was that the correlation coefficient had just been
invented, and was about the only way people had of measuring relationships between variables.
Since then it’s been propagated by statistics courses where it is the only way people are taught
to measure relationships. The great statistician John Tukey once wrote “Does anyone know
when the correlation coefficient is useful? If so, why don’t they tell us?”
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four features, j, l, r, s. Then, if the model (4) is true,

ρjr/ρlr
ρjs/ρls

=
wjwr/wlwr
wjws/wlws

(6)

=
wj/wl
wj/wl

(7)

= 1 (8)

The relationship
ρjrρls = ρjsρlr (9)

is called the “tetrad equation”, and we will meet it again later when we consider
methods for causal discovery.

Spearman found that the tetrad equation held in his data on school grades (to
a good approximation), and concluded that a single general factor of intelligence
must exist. This was, of course, logically fallacious.

Later work, using large batteries of different kinds of intelligence tests,
showed that the tetrad equation does not hold in general, or more exactly that
departures from it are too big to explain away as sampling noise. (Recall that
the equations are about the true correlations between the variables, but we only
get to see sample correlations, which are always a little off.) The response, done
in an ad hoc way by Spearman and his followers, and then more systemati-
cally by Thurstone, was to introduce multiple factors. This breaks the tetrad
equation, but still accounts for the correlations among features by saying that
features are really directly correlated with factors, and uncorrelated conditional
on the factor scores.3 Thurstone’s form of factor analysis is basically the one
people still use — there have been refinements, of course, but it’s mostly still
his method.

2 Preliminaries to Factor Estimation

Assume all the factor scores are uncorrelated with each other and have vari-
ance 1; also that they are uncorrelated with the noise terms. We’ll solve the
estimation problem for factor analysis by reducing it to an eigenvalue problem
again.

Start from the matrix form of the model, Eq. 3, which you’ll recall was

X = ε+ Fw (10)

We know that XTX is a p× p matrix, in fact it’s n times the sample covariance
3You can (and should!) read the classic “The Vectors of Mind” paper (Thurstone, 1934)

online.
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matrix V. So

nV = XTX (11)

= (ε+ Fw)T (ε+ Fw) (12)
=

(
εT + wTFT

)
(ε+ Fw) (13)

= εT ε+ εTFw + wTFT ε+ wTFTFw (14)
= nΨ + 0 + 0 + nwT Iw (15)
= nΨ + nwTw (16)

V = Ψ + wTw (17)

where Ψ is the diagonal matrix whose entries are the ψj . The cross-terms cancel
because the factor scores are uncorrelated with the noise, and the FTF term is
just n times the covariance matrix of the factor scores, which by assumption is
the identity matrix.

At this point, the actual factor scores have dropped out of the problem, and
all we are left with are the more “structural” parameters, namely the factor
loadings w and the specific variances ψj . We know, or rather can easily esti-
mate, the covariance matrix V, so we want to solve Eq. 17 for these unknown
parameters.

The problem is that we want q < p, but on its face (17) gives us p2 equations,
one for each entry of V, and only p+ pq unknowns (the diagonal elements of Ψ,
plus the elements of w). Systems with more equations than unknowns generally
cannot be solved. This makes it sound like it’s actually impossible to estimate
the factor analysis model!4

3 Estimation by Linear Algebra

The means of escape is linear algebra.

3.1 A Clue from Spearman’s One-Factor Model

Remember that in Spearman’s model with a single general factor, the covariance
between features a and b in that model is the product of their factor weightings:

Vab = wawb (18)
4Actually, the book-keeping for the number of degrees of freedom is a little more compli-

cated, though the point is sound. First of all, there are not p2 independent equations but
only p(p + 1)/2 of them, because V is a symmetric matrix. (Since Ψ is diagonal, Ψ + wT w
is automatically symmetric.) On the other hand, each of the q rows of w must be orthogonal
to all the others, which gives q(q − 1)/2 constraints on the unknowns. So the number of
degrees of freedom for V is p(p+1)/2, and the number of degrees of freedom for the unknown
parameters is p + pq− q(q−1)/2. If the former exceeds the later, there are degrees of freedom
left over to estimate the parameters — but there may be no exact solution. If on the other
hand the parameters have more degrees of freedom than V does, then there cannot possibly
be a unique solution, and the model is hopelessly unidentifiable no matter how much data we
have. Most software, including R’s default factor analysis function, will simply refuse to work
with such a model.
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The exception is that Vaa = w2
a + ψa, rather than w2

a. However, if we look at
U = V −Ψ, that’s the same as V off the diagonal, and a little algebra shows
that its diagonal entries are, in fact, just w2

a. So if we look at any two rows of
U, they’re proportional to each other:

Ua· =
wa
wb
Ub· (19)

This means that, when Spearman’s model holds true, there is actually only one
linearly-independent row in in U. Rather than having p2 equations, we’ve only
got p independent equations.5

Recall from linear algebra that the rank of a matrix is how many linearly
independent rows it has.6 Ordinarily, the matrix is of full rank, meaning
all the rows are linearly independent. What we have just seen is that when
Spearman’s model holds, the matrix U is not of full rank, but rather of rank 1.
More generally, when the factor analysis model holds with q factors, the matrix
has rank q.

3.2 Estimating Factor Loadings and Specific Variances

We are now in a position to set up the classic method for estimating the factor
model.

As above, define U = V − Ψ. This is the reduced or adjusted covari-
ance matrix. The diagonal entries are no longer the variances of the features,
but the variances minus the specific variances. These common variances or
commonalities show how much of the variance in each feature is associated
with the variances of the latent factors. U is still, like V, a positive symmetric
matrix. We can’t actually calculate U until we know, or have a guess as to,
Ψ. A reasonable and common starting-point is to do a linear regression of each
feature j on all the other features, and then set ψj to the mean squared error
for that regression.

Because U is a positive symmetric matrix, we know from linear algebra that
it can be written as

U = CDCT (20)

where C is the matrix whose columns are the eigenvectors of U, and D is
the diagonal matrix whose entries are the eigenvalues. That is, if we use all
p eigenvectors, we can reproduce the covariance matrix exactly. Suppose we
instead use Cq, the p× q matrix whose columns are the eigenvectors going with
the q largest eigenvalues, and likewise make Dq the diagonal matrix of those
eigenvalues. Then CqDqCq

T will be a symmetric positive p × p matrix. It
won’t quite equal U, but it will come closer as we let q grow towards p, and at
any given q, this matrix comes closer to being U than any other we could put
together which had rank q.

5This creates its own problems when we try to estimate the factor scores, as we’ll see.
6We could also talk about the columns; it wouldn’t make any difference.
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Now define Dq
1/2 as the q × q diagonal matrix of the square roots of the

eigenvalues. Clearly Dq = Dq
1/2Dq

1/2. So

CqDqCq
T = CqDq

1/2Dq
1/2Cq

T =
(
CqDq

1/2
)(

CqDq
1/2
)T

(21)

So we have
U ≈

(
CqDq

1/2
)(

CqDq
1/2
)T

(22)

but at the same time we know that U = wTw. So first we identify w with(
CqDq

1/2
)T

:

ŵ =
(
CqDq

1/2
)T

(23)

Now we use w to re-set Ψ, so as to fix the diagonal entries of the covariance
matrix.

ŵ =
(
CqDq

1/2
)T

(24)

ψ̂j = Vjj −
k∑
r=1

w2
rj (25)

V ≈ V̂ ≡ Ψ̂ + ŵT ŵ (26)

The “predicted” covariance matrix V̂ in the last line is exactly right on the
diagonal (by construction), and should be closer off-diagonal than anything else
we could do with the same number of factors — i.e., the same rank for the U
matrix. However, our estimate of U itself has in general changed, so we can try
iterating this (i.e., re-calculating Cq and Dq), until nothing changes.

Let’s think a bit more about how well we’re approximating V. The approx-
imation will always be exact when q = p, so that there is one factor for each
feature (in which case Ψ = 0 always). Then all factor analysis does for us is
to rotate the coordinate axes in feature space, so that the new coordinates are
uncorrelated. (This is the same was what PCA does with p components.) The
approximation can also be exact with fewer factors than features if the reduced
covariance matrix is of less than full rank, and we use at least as many factors
as the rank.

4 Maximum Likelihood Estimation

It has probably not escaped your notice that the estimation procedure above
requires a starting guess as to Ψ. This makes its consistency somewhat shaky.
(If we continually put in ridiculous values for Ψ, there’s no reason to expect
that ŵ→ w, even with immensely large samples.) On the other hand, we know
from our elementary statistics courses that maximum likelihood estimates are
generally consistent, unless we choose a spectacularly bad model. Can we use
that here?

7



We can, but at a cost. We have so far got away with just making assumptions
about the means and covariances of the factor scores F. To get an actual
likelihood, we need to assume something about their distribution as well.

The usual assumption is that Fir ∼ N (0, 1), and that the factor scores
are independent across factors r = 1, . . . q and individuals i = 1, . . . n. With
this assumption, the features have a multivariate normal distribution ~Xi ∼
N (0,Ψ + wTw). This means that the log-likelihood is

L = −np
2

log 2π − n

2
log |Ψ + wTw| − n

2
tr
(

(Ψ + wTw)
−1

V
)

(27)

where tr A is the trace of the matrix A, the sum of its diagonal elements.
One can either try direct numerical maximization, or use a two-stage pro-

cedure. Starting, once again, with a guess as to Ψ, one finds that the optimal
choice of Ψ1/2wT is given by the matrix whose columns are the q leading eigen-
vectors of Ψ1/2VΨ1/2. Starting from a guess as to w, the optimal choice of Ψ
is given by the diagonal entries of V −wTw. So again one starts with a guess
about the unique variances (e.g., the residuals of the regressions) and iterates
to convergence.7

The differences between the maximum likelihood estimates and the “prin-
cipal factors” approach can be substantial. If the data appear to be normally
distributed (as shown by the usual tests), then the additional efficiency of max-
imum likelihood estimation is highly worthwhile. Also, as we’ll see next time,
it is a lot easier to test the model assumptions is one uses the MLE.

4.1 Estimating Factor Scores

The probably the best method for estimating factor scores is the “regression”
or “Thomson” method, which says

F̂ir =
∑
j

Xijbij (28)

and seeks the weights bij which will minimize the mean squared error, E[(F̂ir −
Fir)2]. You will see how this works in a homework problem.

5 The Rotation Problem

Recall from linear algebra that a matrix O is orthogonal if its inverse is the
same as its transpose, OTO = I. The classic examples are rotation matrices.
For instance, to rotate a two-dimensional vector through an angle α, we multiply
it by

Rα =
[

cosα − sinα
sinα cosα

]
(29)

7The algebra is tedious. See section 3.2 in Bartholomew (1987) if you really want it. (Note
that Bartholomew has a sign error in his equation 3.16.)

8



The inverse to this matrix must be the one which rotates through the angle −α,
R−1
α = R−α, but trigonometry tells us that R−α = RT

α .
To see why this matters to us, go back to the matrix form of the factor

model, and insert an orthogonal q × q matrix and its transpose:

X = ε+ Fw (30)
= ε+ FOOTw (31)
= ε+ Gu (32)

We’ve changed the factor scores to G = FO, and we’ve changed the factor
loadings to u = OTw, but nothing about the features has changed at all. We
can do as many orthogonal transformations of the factors as we like, with no
observable consequences whatsoever.8

Statistically, the fact that different parameter settings give us the same ob-
servational consequences means that the parameters of the factor model are
unidentifiable. The rotation problem is, as it were, the revenant of having
an ill-posed problem: we thought we’d slain it through heroic feats of linear
algebra, but it’s still around and determined to have its revenge.

Mathematically, this should not be surprising at all. The factor live in a
q-dimensional vector space of their own. We should be free to set up any coor-
dinate system we feel like on that space. Changing coordinates in factor space
will, however, require a compensating change in how factor space coordinates
relate to feature space (the factor loadings matrix w). That’s all we’ve done
here with our orthogonal transformation.

Substantively, this should be rather troubling. If we can rotate the factors
as much as we like without consequences, how on Earth can we interpret them?

Exercises

1. Prove Eq. 5.

2. Why is it fallacious to go from “the data have the kind of correlations
predicted by a one-factor model” to “the data were generated by a one-
factor model”?

3. Show that the correlation between the jth feature and G, in the one-factor
model, is wj .

4. Show that the diagonal entries of U = V −Ψ are given by w2
a.
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