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Last time, we looked at the problem of estimating causal effects within a

known graphical causal model — essentially the problem of removing confound-
ing. Today, at last, we get at the problem of how to find the right graph in the
first place. As always, we presume that there is some directed acyclic graph
which adequately represents the systematic interactions among the variables.

First, as a warm-up, we look at testing the implications of different DAG
models, and so comparing them.

1 Testing DAGs

As seen in the homework, if we have multiple contending DAGs, we would like
to focus our inference on telling which one is right (if any of them are). Since
the graphs are different, they make different assertions about which variables
have causal effects on which other variables. If we can experiment, those claims
can be checked directly. If a model says X is a parent of Y , but when we
experimentally manipulate X it makes no difference to Y , we can throw that
model out.

If we cannot experiment, we look for a qualitative, observational difference
between the models — some conditional independence relation which one model
says is present, and the other says is absent. For instance, in homework 10,
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we had cancer |= tar|smoking in one model, but cancer 6 |= tar|smoking in the
other. To discriminate between these models, we just need to be able to test
for conditional independence.

Recall from two lectures ago that conditional independence is equivalent to
zero conditional information: X |= Y |Z if and only if I[X;Y |Z] = 0. In prin-
ciple, this solves the problem. In practice, estimating mutual information is
non-trivial, and in particular the sample mutual information often has a very
complicated distribution. You could always bootstrap it, but often something
more tractable is desirable. Completely general conditional independence test-
ing is actually an active area of research, though unfortunately much of the
work is still quite mathematical (Sriperumbudur et al., 2010).

If all the variables are discrete, one just has a big contingency table problem,
and could use a G2 or χ2 test. If everything is linear and multivariate Gaussian,
X |= Y |Z is equivalent to zero partial correlation1. Nonlinearly, if X |= Y |Z, then
E [Y |Z] = E [Y |X,Z], so if smoothing Y on X and Z leads to different predic-
tions than just smoothing Z, conditional independence fails. To reverse this,
and go from E [Y |Z] = E [Y |X,Z] to X |= Y |Z, requires the extra assumption
that Y doesn’t depend on X through its variance or any other moment. (This
is weaker than the linear-and-Gaussian assumption, of course.)

The conditional independence relationX |= Y |Z is fully equivalent to Pr (Y |X,Z) =
Pr (Y |Z). We could check this using non-parametric density estimation, though
we would have to bootstrap the distribution of the test statistic. A more au-
tomatic, if slightly less rigorous, procedure comes from the idea mentioned in
Lecture 6. If X is in fact useless for predicting Y given Z, then an adaptive
bandwidth selection procedure (like cross-validation) should realize that giving
any finite bandwidth to X just leads to over-fitting. The bandwidth given to
X should tend to the maximum allowed, smoothing X away altogether. This
argument can be made more formal, and made into the basis of a test (Hall
et al., 2004; Li and Racine, 2007).

Notice that this basic idea, of checking the conditional independence rela-
tions implied by a model, can be used even when we do not have two rival
models. (This is more like a goodness-of-fit test than a comparative hypothesis
test.) As usual, it is simple to reject a model whose predictions do not match
the data. Managing to match the data is only evidence for a model if such a
match was very unlikely, if the model is false. I will not, however, repeat the
earlier discussion of the logic of model-checking here.

All of this is in fact fairly conventional hypothesis testing, where models are
just handed to us by the Angel, or drawn out of scientific theories. The one
wrinkle is that the DAG presents us with a lot of hypotheses which are in a
sense small or local, making them easier to test, but which still bear on the
global model. (We do not have to check a complete model of the determinants
of cancer, just whether tar predicts cancer after controlling for smoking.) This
is very suggestive. If we could paste together enough of these qualitative con-

1As you know, the partial correlation between X and Y given Z is the correlation between
them, after linearly regressing both on Z. That is, it is the correlation of their residuals.
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clusions about which varies are independent of which others, could we actually
discover the right graph from the data?

2 Causal Discovery with Known Variables

Causal discovery is silly with just one variable, and too hard with just two for
us.2

So let’s start with three variables, X, Y and Z. By testing for independence
and conditional independence, we could learn that there had to be edges be-
tween X and Y and Y and Z, but not between X and Z.3 But conditional
independence is a symmetric relationship, so how could we orient those edges,
give them direction? Well, there are only four possible directed graphs corre-
sponding to that undirected graph:

• X → Y → Z (a chain);

• X ← Y ← Z (the other chain);

• X ← Y → Z (a fork on Y );

• X → Y ← Z ( a collision at Y )

With the fork or either chain, we have X |= Z|Y . On the other hand, with
the collider we have X 6 |= Z|Y . (This is where the assumption of faithfulness
comes in.) Thus X 6 |= Z|Y if and only if there is a collision at Y . By testing for
this conditional independence, we can either definitely orient the edges, or rule
out an orientations. If X − Y − Z is just a subgraph of a larger graph, we can
still identify it as a collider if X 6 |= Z| {Y, S} for all collections of nodes S (not
including X and Z themselves, of course).

With more nodes and edges, we can induce more orientations of edges
by consistency with orientations we get by identifying colliders. For example,
suppose we know that X,Y, Z is either a chain or a fork on Y . If we learn that
X → Y , then the triple cannot be a fork, and must be the chain X → Y → Z.
So orienting the X − Y edge induces an orientation of the Y −Z edge. We can
also sometimes orient edges through background knowledge; for instance we
might know that Y comes later in time than X, so if there is an edge between
them it cannot run from Y to X.4 We can eliminate other edges based on
similar sorts of background knowledge: men tend to be heavier than women,

2But see Janzing (2007); Hoyer et al. (2009) for some ideas on how you could do it if
you’re willing to make some extra assumptions. The basic idea of these papers is that the
distribution of effects given causes should be simpler, in some sense, than the distribution of
causes given effects.

3Remember that an edge between X and Y means that either X is a parent of Y , X → Y ,
or Y is a parent of X, X ← Y . Either way, the two variables will be dependent no matter
what collection of other variables we might condition on. If X |= Y |S for some set of variables
S, then, and only then, is there no edge between X and Y .

4Some have argued, or at least entertained the idea, that the logic here is backwards: rather
than order in time constraining causal relations, causal order defines time order. (Versions
of this idea are discussed by, inter alia, Russell (1927); Wiener (1961); Reichenbach (1956);
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but changing weight does not change sex, so there can’t be an edge (or even a
directed path!) from weight to sex.

Orienting edges is the core of the basic causal discovery procedure, the SGS
algorithm (Spirtes et al., 2001, §5.4.1, p. 82). This assumes:

1. The data-generating distribution has the causal Markov property on a
graph G.

2. The data-generating distribution is faithful to G.

3. Every member of the population has the same distribution.

4. All relevant variables are in G.

5. There is only one graph G to which the distribution is faithful.

Abstractly, the algorithm works as follows:

• Start with a complete undirected graph on all variables.

• For each pair of variables, see if conditioning on some set of variables
makes them conditionally independent; if so, remove their edge.

• Identify all colliders by checking for conditional dependence; orient the
edges of colliders.

• Try to orient undirected edges by consistency with already-oriented edges;
do this recursively until no more edges can be oriented.

Pseudo-code is in the appendix.
Call the result of the SGS algorithm Ĝ. If all of the assumptions above hold,

and the algorithm is correct in its guesses about when variables are conditionally
independent, then Ĝ = G. In practice, of course, conditional independence
guesses are really statistical tests based on finite data, so we should write the
output as Ĝn, to indicate that it is based on only n samples. If the conditional
independence test is consistent, then

lim
n→∞

Pr
(
Ĝn 6= G

)
= 0

In other words, the SGS algorithm converges in probability on the correct causal
structure; it is consistent for all graphs G. Of course, at finite n, the probability
of error — of having the wrong structure — is (generally!) not zero, but this

Pearl (2009); Janzing (2007) makes a related suggestion). Arguably then using order in time
to orient edges in a causal graph begs the question, or commits the fallacy of petitio principii.
But of course every syllogism does, so this isn’t a distinctively statistical issue. (Take the
classic: “All men are mortal; Socrates is a man; therefore Socrates is mortal.” How can
we know that all men are mortal until we know about the mortality of this particular man,
Socrates? Isn’t this just like asserting that tomatoes and peppers must be poisonous, because
they belong to the nightshade family of plants, all of which are poisonous?) While these
philosophical issues are genuinely fascinating, this footnote has gone on long enough, and it
is time to return to the main text.
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just means that, like any statistical procedure, we cannot be absolutely certain
that it’s not making a mistake.

One consequence of the independence tests making errors on finite data can
be that we fail to orient some edges — perhaps we missed some colliders. These
unoriented edges in Ĝn can be thought of as something like a confidence region
— they have some orientation, but multiple orientations are all compatible with
the data.5 As more and more edges get oriented, the confidence region shrinks.

If the fifth assumption above fails to hold, then there are multiple graphs
G to which the distribution is faithful. This is just a more complicated version
of the difficulty of distinguishing between the graphs X → Y and X ← Y . All
the graphs in this equivalence class may have some arrows in common; in
that case the SGS algorithm will identify those arrows. If some edges differ in
orientation across the equivalence class, SGS will not orient them, even in the
limit. In terms of the previous paragraph, the confidence region never shrinks
to a single point, just because the data doesn’t provide the information needed
to do this.

If there are unmeasured relevant variables, we can get not just unoriented
edges, but actually arrows pointing in both directions. This is an excellent sign
that some basic assumption is being violated.

The SGS algorithm is statistically consistent, but very computationally inef-
ficient; the number of tests it does grows exponentially in the number of variables
p. This is the worst-case complexity for any consistent causal-discovery proce-
dure, but this algorithm just proceeds immediately to the worst case, not taking
advantage of any possible short-cuts. A refinement, called the PC algorithm,
tries to minimize the number of conditional independence tests performed, es-
sentially by doing easy tests first, and using what it can glean from them to cut
down on the number of tests which will need to be done later (Spirtes et al.,
2001, §5.4.2, pp. 84–88). There has been a recent revival of statistical work on
the PC algorithm, since the paper of Kalisch and Bühlmnann (2007), and at
the very least it makes a good default procedure.

2.1 Causal Discovery with Hidden Variables

Suppose that the set of variables we measure is not causally sufficient. Could
we at least discover this? Could we possibly get hold of some of the causal rela-
tionships? Algorithms which can do this exist (e.g., the CI and FCI algorithms
of Spirtes et al. (2001, ch. 6)), but they require considerably more graph-fu.
The results of these algorithms can succeed in removing some edges between
observable variables, and definitely orienting some of the remaining edges. If
there are actually no latent common causes, they end up acting like the SGS or
PC algorithms.

5I say “multiple orientations” rather than “all orientations”, because picking a direction
for one edge might induce an orientation for others.
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2.2 Software

The PC and FCI algorithms are implemented in the stand-alone Java program
Tetrad (http://www.phil.cmu.edu/projects/tetrad/). They are also im-
plemented in the pcalg package on CRAN (Kalisch et al., 2010, 2011). This
package also includes functions for calculating the effects of interventions from
fitted graphs. The documentation for the functions is somewhat confusing; see
Kalisch et al. (2011) for a tutorial introduction.

2.3 On Conditional Independence Tests

The abstract algorithms for causal discovery assume the existence of consistent
tests for conditional independence. The implementations known to me mostly
assume either that variables are discrete (so that one can basically use the χ2

test), or that they are continuous, Gaussian, and linearly related (so that one
can test for vanishing partial correlations), though the pcalg package does al-
low users to provide their own conditional independence tests as arguments. It
bears emphasizing that these restrictions are not essential. As soon as you have
a consistent independence test, you are, in principle, in business. In partic-
ular, consistent non-parametric tests of conditional independence would work
perfectly well. An interesting example of this is the paper by Chu and Gly-
mour (2008), on finding causal models for the time series, assuming additive
but non-linear models.

3 Limitations on Consistency of Causal Discov-
ery

There are some important limitations to causal discovery algorithms (Spirtes
et al., 2001, §12.4). They are universally consistent: for all causal graphs G,6

lim
n→∞

Pr
(
Ĝn 6= G

)
= 0 (1)

The probability of getting the graph wrong can be made arbitrarily small by
using enough data. However, this says nothing about how much data we need
to achieve a given level of confidence, i.e., the rate of convergence. Uniform
consistency would mean that we could put a bound on the probability of error
as a function of n which did not depend on the true graph G. Robins et al.
(2003) proved that no uniformly-consistent causal discovery algorithm can exist.
The issue, basically, is that the Adversary could make the convergence in Eq. 1
arbitrarily slow by selecting a distribution which, while faithful to G, came very
close to being unfaithful, making some of the dependencies implied by the graph
arbitrarily small. For any given dependence strength, there’s some amount of
data which will let us recognize it with high confidence, but the Adversary can

6If the true distribution is faithful to multiple graphs, then we should read G as their
common graph pattern, which has some undirected edges.

6

http://www.phil.cmu.edu/projects/tetrad/


make the required data size as large as he likes by weakening the dependence,
without ever setting it to zero.7

The upshot is that so uniform, universal consistency is out of the question;
we can be universally consistent, but without a uniform rate of convergence;
or we can converge uniformly, but only on some less-than-universal class of
distributions. These might be ones where all the dependencies which do exist
are not too weak (and so not too hard to learn reliably from data), or the number
of true edges is not too large (so that if we haven’t seen edges yet they probably
don’t exist; Janzing and Herrmann, 2003; Kalisch and Bühlmnann, 2007).

It’s worth emphasizing that the Robins et al. (2003) no-uniform-consistency
result applies to any method of discovering causal structure from data. Invoking
human judgment, Bayesian priors over causal structures, etc., etc., won’t get
you out of it.

7Roughly speaking, if X and Y are dependent given Z, the probability of missing this
conditional dependence with a sample of size n should go to zero like O(2−nI[X;Y |Z]), I being
mutual information. To make this probability equal to, say, α we thus need n = O(− logα/I)
samples. The Adversary can thus make n extremely large by making I very small, yet positive.
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4 Exercises

To think through, not to hand in.

1. Describe how to use bandwidth selection as a conditional independence
test.

2. When, exactly, does E [Y |X,Z] = E [Y |Z] imply Y |= X|Z?

3. Would the SGS algorithm work on a non-causal, merely-probabilistic DAG?
If so, in what sense is it a causal discovery algorithm? If not, why not?

4. Read Kalisch et al. (2011), install the pcalg paper, and give it the data
from homework 10. Does it recover the graph which generated the data?
If not, why do you think it failed?
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A Pseudocode for the SGS Algorithm

When you see a loop, assume that it gets entered at least once. “Replace” in
the sub-functions always refers to the input graph.

SGS = function(set of variables V) {
Ĝ = colliders(prune( complete undirected graph on V))
until (Ĝ == G′) {

Ĝ = G′

G′ = orient(Ĝ)
}
return(Ĝ)

}

prune = function(G) {
for each A,B ∈ V {

for each S ⊆ V \ {A,B} {
if A |= B|S { G = G \ (A−B) }

}
}
return(G)

}

collliders = function(G) {
for each (A−B) ∈ G {

for each (B − C) ∈ G {
if (A− C) 6∈ G {

collision = TRUE
for each S ⊂ B ∩V \ {A,C} {

if A |= C|S { collision = FALSE }
}
if (collision) { replace (A−B) with (A→ B), (B − C) with (B ← C) }

}
}

}
return(G)

}

orient = function(G) {
if ((A→ B) ∈ G & (B − C) ∈ G & (A− C) 6∈ G) { replace (B − C) with (B → C) }
if ((directed path from A to B)∈ G & (A−B) ∈ G) { replace (A−B) with (A→ B) }
return(G)

}
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