
Writing R Functions

36-402, Advanced Data Analysis

5 February 2011

The ability to read, understand, modify and write simple pieces of code is an
essential skill for modern data analysis. Lots of high-quality software already
exists for specific purposes, which you can and should use, but statisticians
need to grasp how such software works, tweak it to suit their needs, recombine
existing pieces of code, and when needed create their own tools. Someone who
just knows how to run canned routines is not a data analyst but a technician
who tends a machine they do not understand.

Fortunately, writing code is not actually very hard, especially not in R. All
it demands is the discipline to think logically, and the patience to practice. This
note tries to illustrate what’s involved, starting from the very beginning. It is
redundant for many students, but some of you may find it helpful.

Programming in R is organized around functions. You all know what a
mathematical function is, like log x or φ(z) or sin θ: it is a rule which takes some
inputs and delivers a definite output. A function in R, like a mathematical
function, takes zero or more inputs, also called arguments, and returns an
output. The output is arrived at by going through a series of calculations, based
on the input, which we specify in the body of the function. As the computer
follows our instructions, it may do other things to the system; these are called
side-effects. (The most common sort of side-effect, in R, is probably updating
a plot.) The basic declaration or definition of a function looks like so:

my.function <- function(argument.1, argument.2, ...) {
clever manipulations of arguments
return(the.return.value)

}

We write functions because we often find ourselves going through the same
sequence of steps at the command line, perhaps with small variations. It saves
mental effort on our part to take that sequence and bind it together into an
integrated procedure, the function, so that then we can think about the function
as a whole, rather than the individual steps. It also reduces error, because, by
invoking the same function every time, we don’t have to worry about missing a
step, or wondering whether we forgot to change the third step to be consistent
with the second, and so on.

1

1 First Example: Pareto Quantiles

Let me give a really concrete example. In the notes for lectures 7 and 8, I
mentioned the Pareto distribution, which has the probability density function

f(x;α, x0) =

{
α−1
x0

(
x
x0

)−α
x ≥ x0

0 x < x0

Consequently, the CDF is

F (x;α, x0) = 1−
(
x

x0

)−α+1

and the quantile function is

Q(p;α, x0) = x0(1− p)−
1

α−1

Say I want to find the median of a Pareto distribution with α = 2.34 and
x0 = 6× 108. I can do that:

> 6e8 * (1-0.5)^(-1/(2.33-1))
[1] 1010391288

If I decide I want the 40th percentile of the same distribution, I can do that:

> 6e8 * (1-0.4)^(-1/(2.33-1))
[1] 880957225

If I decide to raise the exponent to 2.5, lower the threshold to 1× 106, and ask
about the 92nd percentile, I can do that, too:

> 1e6 * (1-0.92)^(-1/(2.5-1))
[1] 5386087

But doing this all by hand gets quite tiresome, and at some point I’m going
to mess up and write when I meant ^. I’ll write a function to do this for me,
and so that there is only one place for me to make a mistake:

qpareto.1 <- function(p, exponent, threshold) {
q <- threshold*((1-p)^(-1/(exponent-1)))
return(q)

}

The name of the function is what goes on the left of the assignment <-, with
the declaration (beginning function) on the right. (I called this qpareto.1
to distinguish it from later modifications.) The three terms in the parenthesis
after function are the arguments to qpareto — the inputs it has to work
with. The body of the function is just like some R code we would type into
the command line, after assigning values to the arguments. The very last line

2

tells the function, explicitly, what its output or return value should be. Here,
of course, the body of the function calculates the pth quantile of the Pareto
distribution with the exponent and threshold we ask for.

When I enter the code above, defining qpareto.1, into the command line, R
just accepts it without outputting anything. It thinks of this as assigning certain
value to the name qpareto.1, and it doesn’t produce outputs for assignments
when they succeed, just as if I’d said alpha <- 2.5.

All that successfully creating a function means, however, is that we didn’t
make a huge error in the syntax. We should still check that it works, by invoking
the function with values of the arguments where we know, by other means, what
the output should be. I just calculated three quantiles of Pareto distributions
above, so let’s see if we can reproduce them.

> qpareto.1(p=0.5,exponent=2.33,threshold=6e8)
[1] 1010391288
> qpareto.1(p=0.4,exponent=2.33,threshold=6e8)
[1] 880957225
> qpareto.1(p=0.92,exponent=2.5,threshold=1e6)
[1] 5386087

So, our first function seems to work successfully.

2 Extending the Function; Functions Which Call
Functions

If we examine other quantile functions (e.g., qnorm), we see that most of them
take an argument called lower.tail, which controls whether p is a probability
from the lower tail or the upper tail. qpareto.1 implicitly assumes that it’s the
lower tail, but let’s add the ability to change this.

qpareto.2 <- function(p, exponent, threshold, lower.tail=TRUE) {
if(lower.tail==FALSE) {
p <- 1-p

}
q <- threshold*((1-p)^(-1/(exponent-1)))
return(q)

}

When, in a function declaration, an argument is followed by = and an expression,
the expression sets the default value of the argument, the one which will be
used unless explicitly over-ridden. The default value of lower.tail is TRUE,
so, unless it is explicitly set to false, we will assume p is a probability counted
from −∞ on up.

The if command is a control structure — if the condition in parenthesis
is true, then the commands in the following braces will be executed; if not, not.
Since lower tail probabilities plus upper tail probabilities must add to one, if we

3

are given an upper tail probability, we just find the lower tail probability and
proceed as before.

Let’s try it:

> qpareto.2(p=0.5,exponent=2.33,threshold=6e8,lower.tail=TRUE)
[1] 1010391288
> qpareto.2(p=0.5,exponent=2.33,threshold=6e8)
[1] 1010391288
> qpareto.2(p=0.92,exponent=2.5,threshold=1e6)
[1] 5386087
> qpareto.2(p=0.5,exponent=2.33,threshold=6e8,lower.tail=FALSE)
[1] 1010391288
> qpareto.2(p=0.92,exponent=2.5,threshold=1e6,lower.tail=FALSE)
[1] 1057162

First: the answer qpareto.2 gives with lower.tail explicitly set to true matches
what we already got from qpareto.1. Second and third: the default value for
lower.tail works, and it works for two different values of the other arguments.
Fourth and fifth: setting lower.tail to FALSE works properly (since the 50th
percentile is the same from above or from below, but the 92nd percentile is
different, and smaller from above than from below).

The function qpareto.2 is equivalent to this:

qpareto.3 <- function(p, exponent, threshold, lower.tail=TRUE) {
if(lower.tail==FALSE) {
p <- 1-p

}
q <- qpareto.1(p, exponent, threshold)
return(q)

}

When R tries to execute this, it will look for a function named qpareto.1 in the
workspace. If we have already defined such a function, then R will execute it,
with the arguments we have provided, and q will become whatever is returned
by qpareto.1. When we give R the above function definition for qpareto.3,
it does not check whether qpareto.1 exists — it only has to be there at run
time. If qpareto.1 changes, then the behavior of qpareto.3 will change with
it, without our having to redefine qpareto.3.

This is extremely useful. It means that we can take our programming prob-
lem and sub-divide it into smaller tasks efficiently. If I made a mistake in
writing qpareto.1, when I fix it, qpareto.3 automatically gets fixed as well
— along with any other function which calls qpareto.1, or qpareto.3 for that
matter. If I discover a more efficient way to calculate the quantiles and modify
qpareto.1, the improvements are likewise passed along to everything else. But
when I write qpareto.3, I don’t have to worry about how qpareto.1 works, I
can just assume it does what I need somehow.

4

2.1 Sanity-Checking Arguments

It is good practice, though not strictly necessary, to write functions which check
that their arguments make sense before going through possibly long and compli-
cated calculations. For the Pareto quantile function, for instance, p must be in
[0, 1], the exponent α must be at least 1, and the threshold x0 must be positive,
or else the mathematical function just doesn’t make sense.

Here is how to check all these requirements:

qpareto.4 <- function(p, exponent, threshold, lower.tail=TRUE) {
stopifnot(p >= 0, p <= 1, exponent > 1, threshold > 0)
q <- qpareto.3(p,exponent,threshold,lower.tail)
return(q)

}

The function stopifnot halts the execution of the function, with an error mes-
sage, if all of its arguments do not evaluate to TRUE. If all those conditions
are met, however, R just goes on to the next command, which here happens
to be running qpareto.3. Of course, I could have written the checks on the
arguments directly into the latter.

Let’s see this in action:

> qpareto.4(p=0.5,exponent=2.33,threshold=6e8,lower.tail=TRUE)
[1] 1010391288
> qpareto.4(p=0.92,exponent=2.5,threshold=1e6,lower.tail=FALSE)
[1] 1057162
> qpareto.4(p=1.92,exponent=2.5,threshold=1e6,lower.tail=FALSE)
Error: p <= 1 is not TRUE
> qpareto.4(p=-0.02,exponent=2.5,threshold=1e6,lower.tail=FALSE)
Error: p >= 0 is not TRUE
> qpareto.4(p=0.92,exponent=0.5,threshold=1e6,lower.tail=FALSE)
Error: exponent > 1 is not TRUE
> qpareto.4(p=0.92,exponent=2.5,threshold=-1,lower.tail=FALSE)
Error: threshold > 0 is not TRUE
> qpareto.4(p=-0.92,exponent=2.5,threshold=-1,lower.tail=FALSE)
Error: p >= 0 is not TRUE

The first two lines give the same results as our earlier functions — as they should,
because all the arguments are in the valid range. The third, fourth, fifth and
sixth lines all show that qpareto.4 stops with an error message when one of
the conditions in the stopifnot is violated. Notice that the error message says
which condition was violated. The seventh line shows one limitation of this:
the arguments violate two conditions, but stopifnot’s error message will only
mention the first one. (What is the other violation?)

5

3 Layering Functions; Debugging

Functions can call functions which call functions, and so on indefinitely. To
illustrate, I’ll write a function which generates Pareto-distributed random num-
bers, using the “quantile transform” method from Lecture 7. This, remember,
is to generate a uniform random number U on [0, 1], and produce Q(U), with
Q being the quantile function of the desired distribution.

The first version contains a deliberate bug, which I will show how to
track down and fix.

rpareto <- function(n,exponent,threshold) {
x <- vector(length=n)
for (i in 1:n) {
x[i] <- qpareto.4(p=rnorm(1),exponent=exponent,threshold=threshold)

}
return(x)

}

Notice that this calls qpareto.4, which calls qpareto.3, which calls qpareto.1.
Let’s this out:

> rpareto(10)
Error in exponent > 1 : ’exponent’ is missing

This is a puzzling error message — the expression exponent > 1 never appears
in rpareto! The error is coming from further down the chain of execution. We
can see where it happens by using the traceback() function, which gives the
chain of function calls leading to the latest error:

> rpareto(10)
Error in exponent > 1 : ’exponent’ is missing
> traceback()
3: stopifnot(p >= 0, p <= 1, exponent > 1, threshold > 0)
2: qpareto.4(p = rnorm(1), exponent = exponent, threshold = threshold)
1: rpareto(10)

traceback() outputs the sequence of function calls leading up to the error in
reverse order, so that the last line, numbered 1, is what we actually entered on
the command line. This tells us that the error is happening when qpareto.4
tries to check the arguments to the quantile function. And the reason it is
happening is that we are not providing qpareto.4 with any value of exponent.
And the reason that is happening is that we didn’t give rpareto any value of
exponent as an explicit argument when we called it, and our definition didn’t
set a default.

Let’s try this again.

> rpareto(n=10,exponent=2.5,threshold=1)
Error: p <= 1 is not TRUE
> traceback()

6

4: stop(paste(ch, " is not ", if (length(r) > 1L) "all ", "TRUE",
sep = ""), call. = FALSE)

3: stopifnot(p >= 0, p <= 1, exponent > 1, threshold > 0)
2: qpareto.4(p = rnorm(1), exponent = exponent, threshold = threshold)
1: rpareto(n = 10, exponent = 2.5, threshold = 1)

This is progress! The stopifnot in qpareto.4 is at least able to evaluate all
the conditions — it just happens that one of them is false. (The line 4 here
comes from the internal workings of stopifnot.) The problem, then, is that
qpareto.4 is being passed a negative value of p. This tells us that the problem
is coming from the part of rpareto.1 which sets p. Looking at that,

p = rnorm(1)

the culprit is obvious: I stupidly wrote rnorm, which generates a Gaussian ran-
dom number, when I meant to write runif, which generates a uniform random
number.1

The obvious fix is just to replace rnorm with runif

rpareto <- function(n,exponent,threshold) {
x <- vector(length=n)
for (i in 1:n) {
x[i] <- qpareto.4(p=runif(1),exponent=exponent,threshold=threshold)

}
return(x)

}

Let’s see if this is enough to fix things, or if I have any other errors:

> rpareto(n=10,exponent=2.5,threshold=1)
[1] 1.000736 2.764087 2.775880 1.058910 1.061712 2.142950 4.220731
[8] 1.496793 3.004766 1.194545

This function at least produces numerical return values rather than errors! Are
they the right values?

We can’t expect a random number generator to always give the same results,
so I can’t cross-check this function against direct calculation, the way I could
check qpareto.1. (Actually, one way to check a random number generator
is to make sure it doesn’t give identical results when run twice!) It’s at least
encouraging that all the numbers are above threshold, but that’s not much of
a test. However, since this is a random number generator, if I use it to produce
a lot of random numbers, the quantiles of the output should be close to the
theoretical quantiles, which I do know how to calculate.

> r <- rpareto(n=1e4,exponent=2.5,threshold=1)
> qpareto.4(p=0.5,exponent=2.5,threshold=1)
[1] 1.587401

1I actually made this exact mistake the first time I wrote the function, back in 2004.

7

> quantile(r,0.5)
50%

1.598253
> qpareto.4(p=0.1,exponent=2.5,threshold=1)
[1] 1.072766
> quantile(r,0.1)

10%
1.072972
> qpareto.4(p=0.9,exponent=2.5,threshold=1)
[1] 4.641589
> quantile(r,0.9)

90%
4.526464

This looks pretty good. Figure 1 shows a plot comparing all the theoretical
percentiles to the simulated ones, confirming that we didn’t just get lucky with
choosing particular percentiles above.

4 Automating Repetition, Passing Arguments,
Scope and Context

The match between the theoretical quantiles and the simulated ones in Figure 1
is close, but it’s not perfect. On the one hand, this might indicate some subtle
mistake. On the other hand, it might just be random sampling noise — rpareto
is supposed to be a random number generator, after all. We could check this by
seeing whether we get different deviations around the line with different runs
of rpareto, or if on the contrary they all pull in the same direction. We could
just make many plots by hand, the way we made that plot by hand, but since
we’re doing almost exactly the same thing many times, let’s write a function.

pareto.sim.vs.theory <- function() {
r <- rpareto(n=1e4,exponent=2.5,threshold=1)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles)

}

This doesn’t return anything. All it does is draw a new sample from the same
Pareto distribution as before, re-calculate the simulated percentiles, and add
them to an existing plot — this is an example of a side-effect. Notice also that
the function presumes that theoretical.percentiles already exists. (The
theoretical percentiles won’t need to change from one simulation draw to the
next, so it makes sense to only calculate them once.)

Figure 2 shows how we can use it to produce multiple simulation runs. We
can see that, looking over many simulation runs, the quantiles seem to be too
large about as often, and as much, as they are too low, which is reassuring.

8

5 10 15 20

5
10

15
20

theoretical.percentiles

si
m
ul
at
ed
.p
er
ce
nt
ile
s

simulated.percentiles <- quantile(r,(0:99)/100)
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=2.5,threshold=1)
plot(theoretical.percentiles,simulated.percentiles)
abline(0,1)

Figure 1: Theoretical percentiles of the Pareto distribution with α = 2.5, x0 = 1,
and empirical percentiles from a sample of 104 values simulated from it with the
rpareto function. (The solid line is the x = y diagonal, for visual reference.

9

5 10 15 20

5
10

15
20

theoretical.percentiles

si
m
ul
at
ed
.p
er
ce
nt
ile
s

simulated.percentiles <- quantile(r,(0:99)/100)
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=2.5,threshold=1)
plot(theoretical.percentiles,simulated.percentiles)
abline(0,1)
for (i in 1:10) {
pareto.sim.vs.theory()

}

Figure 2: Comparing multiple simulated quantile values to the theoretical quan-
tiles.

10

One thing which that figure doesn’t do is let us trace the connections between
points from the same simulation. More generally, we can’t modify the plotting
properties, which is kind of annoying. This is easily fixed modifying the function
to pass along arguments:

pareto.sim.vs.theory <- function(...) {
r <- rpareto(n=1e4,exponent=2.5,threshold=1)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles,...)

}

Putting the ellipses (...) in the argument list means that we can give pareto.sim.vs.theory.2
an arbitrary collection of arguments, but with the expectation that it will pass
them along unchanged to some other function that it will call with ... — here,
that’s the points function. Figure 3 shows how we can use this, by passing
along graphical arguments to points — in particular, telling it to connect the
points by lines (type="b"), varying the shape of the points (pch=i) and the line
style (lty=i).

These figures are reasonably convincing that nothing is going seriously wrong
with the simulation for these parameter values. To check other parameter set-
tings, again, I could repeat all these steps by hand, or I could write another
function:

check.rpareto <- function(n=1e4,exponent=2.5,threshold=1,B=10) {
One set of percentiles for everything
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=exponent,

threshold=threshold)
Set up plotting window, but don’t put anything in it:
plot(0,type="n", xlim=c(0,max(theoretical.percentiles)),

No more horizontal room than we need
ylim=c(0,1.1*max(theoretical.percentiles)),
Allow some extra vertical room for noise
xlab="theoretical percentiles", ylab="simulated percentiles",
main = paste("exponent = ", exponent, ", threshold = ", threshold))

Diagonal, for visual reference
abline(0,1)
for (i in 1:B) {
pareto.sim.vs.theory(n=n,exponent=exponent,threshold=threshold,

pch=i,type="b",lty=i)
}

}

Defining this will work just fine, but it won’t work properly until we re-
defined pareto.sim.vs.theory to take the arguments n, exponent and threshold.2

It seems like a simple modification of the old definition should do the trick:
2Try running check.rpareto(), follows by warnings().

11

5 10 15 20

5
10

15
20

theoretical.percentiles

si
m
ul
at
ed
.p
er
ce
nt
ile
s

simulated.percentiles <- quantile(r,(0:99)/100)
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=2.5,threshold=1)
plot(theoretical.percentiles,simulated.percentiles)
abline(0,1)
for (i in 1:10) {
pareto.sim.vs.theory(pch=i,type="b",lty=i)

}

Figure 3: As Figure 2, but using the ability to pass along arguments to a
subsidiary function to distinguish separate simulation runs.

12

pareto.sim.vs.theory <- function(n,exponent,threshold,...) {
r <- rpareto(n=n,exponent=exponent,threshold=threshold)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles,...)

}

After defining this, the checker function seems to work fine. The following
commands produce the plot in Figure 4, which looks very like the manually-
created one. (Random noise means it won’t be exactly the same.) Putting in
the default arguments explicitly gives the same results (not shown).

> check.rpareto()
> check.rpareto(n=1e4,exponent=2.5,threshold=1)

Unfortunately, changing the arguments reveals a bug (Figure 5). Notice
that the vertical coordinates of the points, coming from the simulation, look
like they have about the same range as the theoretical quantiles, used to lay out
the plotting window. But the horizontal coordinates are all pretty much the
same (on a scale of tens of billions, anyway). What’s going on?

The horizontal coordinates for the points being plotted are set in pareto.sim.vs.theory.3:

points(theoretical.percentiles,simulated.percentiles,...)

Where does this function get theoretical.percentiles from? Since the vari-
able isn’t assigned inside the function, R tries to figure it out from context.
Since pareto.sim.vs.theory was defined on the command line, the context R
uses to interpret it is the global workspace — where there is, in fact, a variable
called theoretical.percentiles, which I set by hand for the previous plots.
So the plotted theoretical quantiles are all too small in Figure 5, because they’re
for a distribution with a much lower threshold.

Didn’t check.rpareto assign is own value to theoretical.percentiles,
which it used to set the plot boundaries? Yes, but that assignment only applied
in the context of the function. Assignments inside a function have limited scope,
they leave values in the broader context alone. Try this:

> x <- 7
> x
[1] 7
> square <- function(y) { x <- y^2; return(x) }
> square(7)
[1] 49
> x
[1] 7

The function square assigns x to be the square of its argument. This assignment
holds within the scope of the function, as we can see from the fact that the
returned value is always the square of the argument, and not what we assigned

13

0 5 10 15 20

0
5

10
15

20

exponent = 2.5 , threshold = 1

theoretical percentiles

si
m

ul
at

ed
 p

er
ce

nt
ile

s

check.rpareto()

Figure 4: Automating the checking of rpareto.

14

0.0e+00 5.0e+09 1.0e+10 1.5e+10 2.0e+10 2.5e+10

0.
0e
+0
0
5.
0e
+0
9
1.
0e
+1
0
1.
5e
+1
0
2.
0e
+1
0
2.
5e
+1
0
3.
0e
+1
0

exponent = 2.33 , threshold = 9e+08

theoretical percentiles

si
m

ul
at

ed
 p

er
ce

nt
ile

s

check.rpareto(n=1e4,exponent=2.33,threshold=9e8)

Figure 5: A bug in check.rpareto.

15

x to be in the global, command-line context. However, this does not over-write
that global value, as the last line shows.3

There are two ways to fix this problem. One is to re-define pareto.sim.vs.theory
to calculate the theoretical quantiles:

pareto.sim.vs.theory <- function(n,exponent,threshold,...) {
r <- rpareto(n=n,exponent=exponent,threshold=threshold)
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=exponent,

threshold=threshold)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles,...)

}

This will work (try running check.rpareto(1e4,2.33,9e8) now), but it’s very
redundant — every time we call this, we’re recalculating the same percentiles,
which we already calculated in check.rpareto. A cleaner solution is to make
the vector of theoretical percentiles an argument to pareto.sim.vs.theory,
and change check.rpareto to provide it.

check.rpareto <- function(n=1e4,exponent=2.5,threshold=1,B=10) {
One set of percentiles for everything
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=exponent,

threshold=threshold)
Set up plotting window, but don’t put anything in it:
plot(0,type="n", xlim=c(0,max(theoretical.percentiles)),

No more horizontal room than we need
ylim=c(0,1.1*max(theoretical.percentiles)),
Allow some extra vertical room for noise
xlab="theoretical percentiles", ylab="simulated percentiles",
main = paste("exponent = ", exponent, ", threshold = ", threshold))

Diagonal, for visual reference
abline(0,1)
for (i in 1:B) {
pareto.sim.vs.theory.4(n=n,exponent=exponent,threshold=threshold,

theoretical.percentiles=theoretical.percentiles,
pch=i,type="b",lty=i)

}
}

pareto.sim.vs.theory <- function(n,exponent,threshold,
theoretical.percentiles,...) {

r <- rpareto(n=n,exponent=exponent,threshold=threshold)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles,...)

3There are techniques by which functions can change assignments outside of their scope.
They are tricky, rare, and best avoided except by those who really know what they are doing.
(If you think you do, you are probably wrong.)

16

}

Figure 6 shows that this succeeds.

5 Avoiding Iteration

Let’s go back to the declaration of rpareto, which I repeat here, unchanged,
for convenience:

rpareto <- function(n,exponent,threshold) {
x <- vector(length=n)
for (i in 1:n) {
x[i] <- qpareto.4(p=runif(1),exponent=exponent,threshold=threshold)

}
return(x)

}

We’ve confirmed that this works, but it involves explicit iteration in the
form of the for loop. Because of the way R carries out iteration4, it is slow,
and better avoided when possible. Many of the utility functions in R, like apply
and its variants, or replicate, are designed to avoid explicit iteration. We could
re-write rpareto using replicate, for example:

rpareto <- function(n,exponent,threshold) {
x <- replicate(n,qpareto.4(p=runif(1),exponent=exponent,threshold=threshold))
return(x)

}

But an every clearer alternative makes use of the way R automatically vec-
torizes arithmetic:

rpareto <- function(n,exponent,threshold) {
x <- qpareto.4(p=runif(n),exponent=exponent,threshold=threshold)
return(x)

}

This feeds qpareto.4 a vector of quantiles p, of length n, which in turn gets
passed along to qpareto.1, which finally tries to evaluate

threshold*((1-p)^(-1/(exponent-1)))

With p being a vector, R hopes that threshold and exponent are also vectors,
and of the same length, so that it evaluate this arithmetic expression component-
wise. If exponent and threshold are shorter, it will “recycle” their values, in
order, until it has vectors equal in length to p. In particular, if exponent and

4Roughly speaking, it ends up having to create and destroy a whole copy of everything
which gets changed in the course of one pass around the iteration loop, which can involve lots
of memory and time.

17

0.0e+00 5.0e+09 1.0e+10 1.5e+10 2.0e+10 2.5e+10

0.
0e
+0
0
5.
0e
+0
9
1.
0e
+1
0
1.
5e
+1
0
2.
0e
+1
0
2.
5e
+1
0
3.
0e
+1
0

exponent = 2.33 , threshold = 9e+08

theoretical percentiles

si
m

ul
at

ed
 p

er
ce

nt
ile

s

check.rpareto(1e4,2.33,9e8)

Figure 6: Using the corrected simulation checker.

18

threshold have length 1, it will repeat both of them length(p) times, and
then evaluate everything component by component. (See the “Introduction to
R” manual for more on this “recycling rule”.) The quantile functions we have
defined inherit this ability to recycle, without any special work on our part.
The final version of rpareto we have written is not only faster, it is clearer and
easier to read.

The outstanding use of replicate is when we want to repeat the same
random experiment many times — there are examples in the notes for lectures
7 and 8.

6 More Complicated Return Values

So far, our functions have returned either a single value, or a simple vector, or
nothing at all. We can make our function return more complicated objects, like
matrices, data frames, or lists.

To illustrate, let’s switch gears away from the Pareto distribution, and think
about the Gaussian for a change. As you know, if we have data x1, x2, . . . xn and
we want to fit a Gaussian distribution to them by maximizing the likelihood,
the best-fitting Gaussian has mean

µ̂ =
1
n

n∑
i=1

xi

which is just the sample mean, and variance

σ̂2 =
1
n

n∑
i=1

(xi − µ̂)2

which differs from the usual way of defining the sample variance by having a
factor of n in the denominator, instead of n − 1. Let’s write a function which
takes in a vector of data points and returns the maximum-likelihood parameter
estimates for a Gaussian.

gaussian.mle <- function(x) {
n <- length(x)
mean.est <- mean(x)
var.est <- var(x)*(n-1)/n
est <- list(mean=mean.est, sd=sqrt(var.est))
return(est)

}

There is one argument, which is the vector of data. To be cautious, I should
probably check that it is a vector of numbers, but skip that to be clear here.
The first line figures out how many data points we have. The second takes the
mean. The third finds the estimated variance — the definition of the built-in

19

var function uses n − 1 in its denominator, so I scale it down by the appro-
priate factor5. The fourth line creates a list, called est, with two components,
named mean and sd, since those are the names R likes to use for the parameters
of Gaussians. The first component is our estimated mean, and the second is
the standard deviation corresponding to our estimated variance6. Finally, the
function returns the list.

As always, it’s a good idea to check the function on a case where we know
the answer.

> x <- 1:10
> mean(x)
[1] 5.5
> var(x) * (9/10)
[1] 8.25
> sqrt(var(x) * (9/10))
[1] 2.872281
> gaussian.mle(x)
$mean
[1] 5.5

$sd
[1] 2.872281

7 General Advice on Programming for This Class

In roughly decreasing order of importance.

7.1 Take a real programming class

Learning enough syntax for some language to make things run without crashing
is not the same as actually learning how to think computationally. One of the
most valuable classes I ever took as an undergrad was CS 60A at Berkeley,
which was an introduction to programming, and so to a whole way of thinking.
(The textbook was The Structure and Interpretation of Computer Programs,
now online at http://mitpress.mit.edu/sicp/.) If at all possible, take a real
programming class; if not possible, try to read a real programming book.

Of course by the time you are taking this class it is generally too late to
follow this advice; hence the rest of the list.

(Actual software engineering is another discipline, over and above basic com-
putational thinking; that’s why we have a software engineering institute. There
is a big difference between the kind of programming I am expecting you to do,
and the kind of programming that software engineers can do.)

5Clearly, if n is large, n−1
n

= 1− 1/n will be very close to one, but why not be precise?
6If n is large,

√
n−1

n
=
√

1− 1
n
≈ 1 − 1

2n
(using the binomial theorem in the last step).

For reasonable data sets, the error of just using sd(x) would have been small — but why have
it at all?

20

http://mitpress.mit.edu/sicp/

7.2 Comment your code

Comments lengthen your file, but they make it immensely easier for other people
to understand. (“Other people” includes your future self; there are few expe-
riences more frustrating than coming back to a program after a break only to
wonder what you were thinking.) Comments should say what each part of the
code does, and how it does it. The “what” is more important; you can change
the “how” more often and more easily.

Every function (or subroutine, etc.) should have comments at the beginning
saying:

• what it does;

• what all its inputs are (in order);

• what it requires of the inputs and the state of the system (“presumes”);

• what side-effects it may have (e.g., “plots histogram of residuals”);

• what all its outputs are (in order)

Listing what other functions or routines the function calls (“dependencies”) is
optional; this can be useful, but it’s easy to let it get out of date.

You should treat “Thou shalt comment thy code” as a commandment which
Moses brought down from Mt. Sinai, written on stone by a fiery Hand.

7.3 RTFM

If a function isn’t doing what you think it should be doing, read the manual. R
in particular is pretty thoroughly documented. (I say this as someone whose job
used to involve programming a piece of special-purpose hardware in a largely
undocumented non-standard dialect of Forth.) Look at (and try) the examples.
Follow the cross-references. There are lots of utility functions built into R;
familiarize yourself with them.

The utility functions I keep using: apply and its variants, especially sapply;
replicate; sort and order; aggregate; table and expand.grid; rbind and
cbind; paste.

7.4 Start from the beginning and break it down

Start by thinking about what you want your program to do. Then figure out a
set of slightly smaller steps which, put together, would accomplish that. Then
take each of those steps and break them down into yet smaller ones. Keep going
until the pieces you’re left with are so small that you can see how to do each of
them with only a few lines of code. Then write the code for the smallest bits,
check it, once it works write the code for the next larger bits, and so on.

In slogan form:

• Think before you write.

21

• What first, then how.

• Design from the top down, code from the bottom up.

(Not everyone likes to design code this way, and it’s not in the written-in-
stone-atop-Sinai category, but there are many much worse ways to start.)

7.5 Break your code into many short, meaningful func-
tions

Since you have broken your programming problem into many small pieces, try
to make each piece a short function. (In other languages you might make them
subroutines or methods, but in R they should be functions.)

Each function should achieve a single coherent task — its function, if you
will. The division of code into functions should respect this division of the
problem into sub-problems. More exactly, the way you break your code into
functions is how you have divided your problem.

Each function should be short, generally less than a page of print-out. The
function should do one single meaningful thing. (Do not just break the cal-
culation into arbitrary thirty-line chunks and call each one a function.) These
functions should generally be separate, not nested one inside the other.

Using functions has many advantages:

• you can re-use the same code many times, either at different places in this
program or in other programs

• the rest of your code only has to care about the inputs and outputs to
the function (its interfaces), not about the internal machinery that turns
inputs into outputs. This makes it easier to design the rest of the program,
and it means you can change that machinery without having to re-design
the rest of the program.

• it makes your code easier to test (see below), to debug, and to understand.

Of course, every function should be commented, as described above.

7.6 Avoid writing the same thing twice

Many programs involve doing the same thing multiple times, either as iteration,
or to slightly different pieces of data, or with some parameters adjusted, etc.
Try to avoid writing two pieces of code to do the same job. If you find yourself
copying the same piece of code into two places in your program, look into writing
one piece of code (generally a function; see above) and call it twice.

Doing this means that there is only one place to make a mistake, rather than
many. It also means that when you fix your mistake, you only have one piece of
code to correct, rather than many. (Even if you don’t make a mistake, you can
always make improvements, and then there’s only one piece of code you have
to work on.) It also leads to shorter, more comprehensible and more adaptable
code.

22

7.7 Use meaningful names

Unlike some older languages, R lets you give variables and functions names of
essentially arbitrary length and form. So give them meaningful names. Writing
loglikelihood, or even loglike, instead of L makes your code a little longer,
but generally a lot clearer, and it runs just the same.

This rule is lower down in the list because there are exceptions and qual-
ifications. If your code is tightly associated to a mathematical paper, or to a
field where certain symbols are conventionally bound to certain variables, you
may as well use those names (e.g., call the probability of success in a binomial
p). You should, however, explain what those symbols are in your comments.
In fact, since what you regard as a meaningful name may be obscure to others
(e.g., those grading your work), you should use comments to explain variables
in any case. Finally, it’s OK to use single-letter variable names for counters in
loops (but see the advice on iteration below).

7.8 Check whether your program works

It’s not a enough — in fact it’s very little — to have a program which runs and
gives you some output. It needs to be the right output. You should therefore
construct tests, which are things that the correct program should be able to do,
but an incorrect program should not. This means that:

• you need to be able to check whether the output is right;

• your tests should be reasonably severe, so that it’s hard for an incorrect
program to pass them;

• your tests should help you figure out what isn’t working;

• you should think hard about programming the test, so it checks whether
the output is right, and you can easily repeat the test as many times as
you need.

Try to write tests for the component functions, as well as the program as a
whole. That way you can see where failures are. Also, it’s easier to figure out
what the right answers should be for small parts of the problem than the whole.

Try to write tests as very small function which call the component you’re
testing with controlled input values. For instance, we tested qpareto by looking
at what it returned for selected arguments with manually carrying out the com-
putation. With statistical procedures, tests can look at average or distributional
results — we saw an example of this with checking rpareto.

Of course, unless you are very clever, or the problem is very simple, a pro-
gram could pass all your tests and still be wrong, but a program which fails
your tests is definitely not right.

(Some people would actually advise writing your tests before writing any
actual functions. They have their reasons but I think that’s overkill for my
courses.)

23

7.9 Don’t give up; complain!

Sometimes you may be convinced that I have given you an impossible program-
ming assignment, or may not be able to get some of the class code to work
properly, etc. In these cases, do not just turn in nothing saying “I couldn’t get
the data file to load/the code to run/figure out what function to write”. Let me
know. Most likely, either there is a trick which I forgot to mention, or I made
a mistake in writing out the assignment. Either way, you are much better off
telling me and getting help than you are turning in nothing.

When complaining, tell me what you tried, what you expected it to do, and
what actually happened. The more specific you can make this, the better. If
possible, attach the relevant R session log and workspace to your e-mail.

Of course, this presumes that you start the homework earlier than the night
before it’s due.

7.10 Avoid iteration

This one is very much specific to R, but worth emphasizing. In many languages,
this would be a reasonable way of summing two vectors:

for (i in 1:length(a)) {
c[i] = a[i] + b[i]

}

In R, this is stupid. R is designed to do all this in a single vectorized operation:

c = a + b

Since we need to add vectors all the time, this is an instance of using a single
function repeatedly, rather than writing the same loop many times. (R just
happens to call the function +.) It is also orders of magnitude faster than the
explicit loop, if the vectors are at all long.

Try to think about vectors as vectors, and, when you need to do something
to them, manipulate all their elements at once, in parallel. R is designed to
let you do this (especially through the apply function and its relatives), and
the advantage of getting to write a+b, instead of the loop, is that it is shorter,
harder to get wrong, and emphasizes the logic (adding vectors) over the imple-
mentation. (Sometimes this won’t speed things up much, but even then it has
advantages in clarity.)

I emphasize again, however, that the speed issue is highly specific to R,
and the way it handles iteration. A good programming class (see above) will
explain the virtues of iteration, and how to translate iteration into recursion
and vice-versa.

24

	First Example: Pareto Quantiles
	Extending the Function; Functions Which Call Functions
	Sanity-Checking Arguments

	Layering Functions; Debugging
	Automating Repetition, Passing Arguments, Scope and Context
	Avoiding Iteration
	More Complicated Return Values
	General Advice on Programming for This Class
	Take a real programming class
	Comment your code
	RTFM
	Start from the beginning and break it down
	Break your code into many short, meaningful functions
	Avoid writing the same thing twice
	Use meaningful names
	Check whether your program works
	Don't give up; complain!
	Avoid iteration

