Chaos, Complexity, and Inference (36-462)
Lecture 1

Cosma Shalizi

15 January 2008
Course Goals

* Learn about developments in dynamics and systems theory
* Understand how they relate to fundamental questions in stochastic modeling (what is randomness? when can we use stochastic models?)
* Think about how to do statistical inference for dependent data
* Get some practice with building and using simulation models
* You have learned a lot about linear regression with independent samples and Gaussian noise
* We are going to break all that
Approach

* Read, simulate, do a few calculations
* No or almost no theorems
* Much rigor necessarily skipped
* A lot of reading — this is deliberate
* Move from lectures to discussions as the course goes

stat.cmu.edu/ cshalizi/462/syllabus.html
Grading

Homework one problem set every 2–3 weeks
1/2 of grade

Class participation 1/6 of grade

Final paper 10–20 pages, due on final exam date
1/3 of grade
About the paper
Experiment in practicing writing about technical material
Possibilities:
- Detailed review of some chunk of course material
- Exposition of one of the optional papers
- Critique of paper or material from the syllabus/literature
- Implementing your own model or applying a technique to data

Topics *must* be approved by me in advance
You will turn in drafts for feedback well before final
Exact dates TBD
Topics

Dynamical Systems Jan. 15–Feb. 7
Models, dynamics, chaos, information, randomness

Self-organization Feb. 12–Feb. 21
Self-organizing systems, cellular automata

Heavy-tailed Distributions Feb. 26–Mar. 6
Examples, properties, origins, estimation, testing

Inference from Simulations Mar. 18–Mar. 27
Severity; Monte Carlo; direct and indirect inference

Complex Networks and Agent-Based Models Apr. 1–Apr. 29
Network structures & growth; collective phenomena; inference; real-world example

Chaos, Complexity and Inference May 1
Models and Simulations
Model is a way of representing dependencies in some part of the world
Hope: tracing consequences in the model lets you predict reality
E.g., a map: tracing a route predicts what you will see and how you can get from A to B
Regressions are models of input/output
Simulating is tracing through consequences step by step in a particular case
Simulation is basic; analytical results are short-cuts to avoid exhaustive simulation (which may not be possible)
Dynamical Systems

We are particularly interested in dynamical models, which represent changes over time.

Components of a dynamical system:

- **state space**: fundamental variables which determine what will happen.
- **update rule**: rule for how the state changes over time, may be stochastic. A.k.a. map or evolution equations or equations of motion:
- **observables**: variables we actually measure; functions of state (+ possible noise)
- **initial condition**: starting state
- **trajectory** or **orbit**: sequence of states over time
A work-horse example: the logistic map

state \(x \), population of some animal, rescaled to some maximum value (so \(x \in [0, 1] \))

map \(x_{t+1} = 4rx_t(1 - x_t) \equiv f(x) \)

the \(x \) factor means that animals make more animals

1 – \(x \) factor means that too many animals keep there from being as many animals

\(r \) is control parameter in \([0, 1]\) (following notation in Flake)

observable : we get to observe \(x \) directly, without noise

horrible caricature — we will see much better population models — but mathematically simple and it illustrates many important points
Set $r = 0.25$ and pick some random starting points
First some code — R doesn’t like iteration but we need it here

```r
logistic.map <- function(x, r) {
  return(4*r*x*(1-x))
}

logistic.map.ts <- function(timelength, r, initial.cond=NULL) {
  x <- vector(mode="numeric", length=timelength)
  if(is.null(initial.cond)) {
    x[1] <- runif(1)
  } else {
    x[1] <- initial.cond
  }
  for (t in 2:timelength) {
    x[t] = logistic.map(x[t-1], r)
  }
  return(x)
}
plot.logistic.map.trajectories <- function(timelength,
num.traj,r) {
plot(1:timelength,logistic.map.ts(timelength,r),lty=2,
    type="b",ylim=c(0,1),xlab="t",ylab="x(t)"
    i = 1
while (i < num.traj) {
    i <- i+1
    x <- logistic.map.ts(timelength,r)
    lines(1:timelength,x,lty=2)
    points(1:timelength,x)
}
}

plot.logistic.map.trajectories(30,10,0.25)
All trajectories seem to be converging to the same value.
They are! They are going to a **fixed point**

Solve:

\[
x = 4(0.25)x(1 - x) \\
x = x - x^2 \\
0 = x^2
\]

Not very interesting!
Let’s change $r$ let’s say 0.3.
Still converging but to a different value

\[ x = 1.2x - 1.2x^2 \]
\[ 0 = 0.2x - 1.2x^2 \]
\[ 0 = x - 6x^2 \]

Solutions are obviously \( x = 0 \) and \( x = 1/6 \). Note all the trajectories converging to 1/6 (marked in red).
Why do they like 1/6 more than 0?
Can you show that 0 is always a fixed point?
Crank up $r$ again, to 0.5; fixed points at $x = 0$ and $x = 0.5$
Again they like one fixed point but not the other
Now $r = 0.8$; the fixed points are $x = 0$ and $x = 11/16$.
What the bleep? Let’s look at just one trajectory
It’s gone to a **cycle** or **periodic orbit**, of period two. This means that there are two solutions to \( x = f(f(x)) \) which are not solutions of \( x = f(x) \):

\[
x = 3.2 \left[ 3.2x(1 - x) \right] \left[ 1 - 3.2x(1 - x) \right]
\]

Quartic equation, so four solutions — we know two of them (\( x = 0, x = 11/16 \)) because they are fixed points; the other two are the points of the periodic cycle.
Phase of the cycle depends on the initial condition
Increasing $r$ increases the **amplitude** of the **oscillation**

![Graph showing the effect of increasing r on oscillation amplitude](image-url)
Increasing $r$ even more (0.9) I get period 4
You will work out more about the periodic orbits in the homework!
Now all the way to $r = 1$
Not periodic *at all* and never converges — *chaos*
Properties of Chaos

We will define “chaos” more strictly next time
For now look at some characteristics

- Sensitive dependence on initial conditions
- Statistical stability of multiple trajectories
- Individual trajectories look representative samples (ergodicity)
- Short-term nonlinear predictability
Sensitive dependence on initial conditions
Deterministic: same initial point has the same future trajectory
Continuity: can get arbitrarily small differences in trajectory by arbitrarily small differences in initial condition

BUT
Amplification of differences in initial conditions: if $|x_1 - y_1| = \epsilon$, then $|x_t - y_t| \approx \epsilon e^{\lambda t}$ for some $\lambda > 0$
Simplest SDIC: $x_{n+1} = \alpha x_n$ for $\alpha > 1$
More complicated behavior when SDIC isn’t combined with run-away growth
$\text{fix } x_1 = 0.90$
compare $x_1 = 0.90$ to $y_1 = 0.91$; tracking to about $t = 4$
compare $x_1 = 0.90$ to $y_1 = 0.90001$; tracking to about $t = 12$
\( x_1 = 0.90 \text{ vs. } y_1 = 0.9000001; \text{ tracking to about } t = 20 \)
extend both trajectories

note that they get back together again around \( t = 60 \)
Statistical stability
Look at what happens to an ensemble of trajectories
Seem to be more dots near the edges than in the middle
This is true!
To check it we need to evolve many trajectories in parallel

```r
courseIntro.logisticMap <- function(timesteps, r, x) {
 t <- 0
 while (t < timesteps) {
 x <- logistic.map(x, r)
 t <- t + 1
 }
 return(x)
}
```
Now run $10^4$ initial points, uniformly distributed

```r
> x1 = runif(10000)
> hist(logistic.map.evolution(999, 1, x1), freq=FALSE, xlab="x", ylab="probability", main="Histogram at t=1000", n=41)
```
Histogram at t=1
Points near 0.5 get mapped towards 1, and the map function changes slowly there, but only points near 0 or 1 get mapped to 0, and the function changes rapidly in those places.
Many points which had gotten near 1 get mapped to near 0, but those near 1/2 are still mapped towards 1.
The two modes are getting balanced
Histogram at $t=10$
Histogram at t=20
Course Intro
Models and Simulations
The Logistic Map as an Example
Properties of Chaos

Histogram at t=100

```
<table>
<thead>
<tr>
<th>x</th>
<th>probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td>0.6</td>
<td>3</td>
</tr>
<tr>
<td>0.8</td>
<td>4</td>
</tr>
</tbody>
</table>
```

Lecture 1
Distribution converges rapidly to an **invariant** distribution
To see that let’s try a different initial distribution, say a Gaussian with mean 0.25, s.d. 0.01, cutting out those outside [0, 1].

```r
> x2 = rnorm(1e4, 0.25, 0.01)
> x2 = x2[x2 >= 0]
> x2 = x2[x2 <= 1]
> length(x2)
[1] 10000
> hist(x2, freq=FALSE, xlab="x", ylab="probability", main="Histogram at t=1", n=41, xlim=c(0,1))
> hist(logistic.map.evolution(4,1,x2), freq=FALSE, xlab="x", ylab="probability", main="Histogram at t=5", n=41, xlim=c(0,1))
```
Histogram at t=1
Histogram at t=5

- X-axis: x
- Y-axis: probability
- Data points at x-values: 0.0, 0.2, 0.4, 0.6, 0.8, 1.0
- Corresponding probabilities: 0.0, 0.2, 0.4, 0.6, 0.8, 1.0

Lecture 1
by $t \approx 10$ it looks like as though initial conditions were uniform
Even though individual trajectories fluctuate all over, the distribution converges. The invariant distribution is in fact

\[ p(x) = \frac{1}{\pi \sqrt{x(1-x)}} \]
Ergodicity

If we do look at an individual trajectory, it looks similar to the whole ensemble of trajectories; here is $x_1 = 0.9$

```r
> hist(logistic.map.ts(1e3,1,0.9),freq=FALSE,xlab="x", ylab="probability", main="Histogram from trajectory to t=1000")
```
Histogram from trajectory to t=100

- X-axis: x ranging from 0.0 to 1.0
- Y-axis: probability ranging from 0.0 to 2.0

The histogram shows the distribution of x values at t=100, with peaks at x values of 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.
Histogram from trajectory to $t=1000$
Histogram from trajectory to $t=1e4$
Histogram from trajectory to $t=1e6$

- $x$
- Probability

- $0.0$  $0.2$  $0.4$  $0.6$  $0.8$  $1.0$
- $0.0$  $0.5$  $1.0$  $1.5$  $2.0$  $2.5$
looks pretty much like what you see from any one other trajectory (here is $y_1 = 0.91$ in red)

```r
> hist(logistic.map.ts(1e6,1,0.9),freq=FALSE,xlab="x", ylab="probability", main="Histogram from trajectory to t=1e6", n=1001)
> hist(logistic.map.ts(1e6,1,0.91),freq=FALSE,xlab="x", ylab="probability", main="Histogram from trajectory to t=1e6", add=TRUE,border="red",n=1001)
```
Histogram from trajectory to $t=1e4$
Histogram from trajectory to $t=1e6$
In every case they are converging on the exact invariant distribution

```r
> hist(logistic.map.ts(1e6,1,0.9),freq=FALSE,xlab="x",ylab="probability",
 main="Histogram from trajectory to t=1e6 vs. invariant distribution",
 n=1001,border="grey")
> curve(1/(pi*sqrt(x*(1-x))),col="blue",add=TRUE,n=1001)
```
Histogram from trajectory to t=1e6 vs. invariant distribution
**Ergodicity** means that almost any long trajectory looks like a representative sample from the invariant distribution. We will define this more precisely later, and explore why it is so important for stochastic modeling.
Short-Term Nonlinear Predictability

\[ x_{t+1} \text{ on } x_t \]

\[
\text{plot}(x.ts[1:1e4], x.ts[2:(1e4+1)], xlab="x(t)", ylab="x(t+1)", type="p")
\]

only $10^4$ points so it plots in a reasonable amount of time
Linear regression is \textit{not} your friend:

\begin{verbatim}
> lm1 <- lm(x.ts[2:1e6] ~ x.ts[1:(1e6-1)])
> summary(lm1)

Call:
  lm(formula = x.ts[2:1e+06] ~ x.ts[1:(1e+06 - 1)])

Residuals:
       Min        1Q   Median        3Q       Max
  -0.5005069 -0.3535795  0.0005158  0.3531829  0.4999921

Coefficients:
                     Estimate  Std. Error   t value  Pr(>|t|)
(Intercept)          0.4995090   0.0006124   815.687 <2e-16 ***
x.ts[1:(1e+06 - 1)]  0.0009979   0.0010000    0.998  0.318

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3536 on 999997 degrees of freedom
Multiple R-Squared: 9.958e-07, Adjusted R-squared: -4.188e-09
F-statistic: 0.9958 on 1 and 999997 DF,  p-value: 0.3183
\end{verbatim}
$x_{t+10}$ on $x_t$

The joint distribution here is very close to being independent
$x_{t+100}$ on $x_t$
Even closer to independence
... except that $x_{t+k}$ is a deterministic function of $x_t$, no matter what $k$ is, so how can they be independent?