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Cross-Reference to R

• Interpolating and smoothing splines: spline(), smooth.spline(),

and kernel regression ksmooth()

• Cross-validation using crossval() from library(bootstrap)

• Generalized additive models

– gam() from library(gam) is the classic GAM function. It allow

for plotting of residuals etc just like ordinary lm().

– gam() from library(mgcv) has a bit more flexibility, and

chooses its smoothing parameters by a more recent generalized

cross-validation method. But it does not seem to let you plot

residuals, etc. for easy model checks (?).

• Projection Pursuit Regression: ppr() from library(MASS).
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Interpolating Splines and Smoothing Splines

Splines are smooth functions (possessing some number of continuous

derivatives) which are piecewise polynomials of a fixed order.

Interpolation splines

Definition. Let x0 < · · · < xK and yk = g(xk) ∀ i. Then s(x) is a natural

interpolating spline of order M if:

(a) s(xk) = g(xk) ∀ k;

(b) s(m+1)(x) ≡ 0 on each interval (xk, xk+1);

(c) s(m)(x) exists and is continuous on (x1, xn), for all m = 1, . . . ,M − 1;

(d) s(M−1)(x1) = s
(M−1)(xn) = 0.

For example

• The natural interpolating spline of order 1 yields piecewise linear

interpolation between the points (xi, yi).

• A common choice for interpolating splines are the natural cubic splines.
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Theorem. There is a unique cubic (k = 3) spline function s(x) satisfying

(a) through (d) above. Moreover,

• s(x) is a piecewise cubic function:

s(x) = ck0 + ck1(x − xk) + ck2(x − xk)
2 + ck3(x − xk)

3 for x ∈ (xk, xk+1);

with the coefficients satisfying a linear system c = Ay implied by (a)–(d)

above.

• Equivalently, s(x) can be written as a linear combination of basis

functions, e.g. for K knots a basis satisfying (b)–(d) would be

N1(x) = 1, N2(x) = x,

Nk+2(x) =
(x − xk)

3
+ − (x − xK)

3
+

xK − xk
−
(x − xK−1)

3
+ − (x − xK)

3
+

xK − xK−1
∀ k = 1, . . . ,K − 2

That is, for any x,

s(x) =

K
∑

j=1

θ jN j(x) = N(x)θ

whereN(x) = (N1(x), . . . ,NK(x)) and θ = (θ1, . . . , θK)
T .
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We can find the coefficients θ = (θ1, . . . , θK)
T by solving the linear system

y1 = g(x1) = s(x1) = N(x1)θ
...

yn = g(xn) = s(xn) = N(xn)θ

or "y = N("x)θ

where "y = (y1, . . . , yn)
T and N("x) is the K × K matrix with (k, j)th entry Nj(xk).

This is a linear regression problem (why??), so it has solution

θ̂ = (N("x)TN("x))−1N("x)T"y

Thus, the fitted values ŷ may be expressed as

ŷ = N("x)θ̂ = N("x)(N("x)TN("x))−1N("x)T"y = S"y

s("x) is an example of a linear smoother

and S = N("x)(N("x)TN("x))−1N("x)T is analogous to the hat matrix

H = X(XTX)−1XT in linear regression.
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One can show that the interpolation spline makes

RSS ( f ) =
K
∑

k=1

(yk − f (xk))
2 ≡ 0

However, so do a lot of other functions (e.g. a single polynomial of

degree K − 1).

Moreover, although it provides a perfect fit at the original data points, it is

usually too highly variable away from the original data points to be of

much use.

If we want a useful interpolating function, we will have to give up exact

fit at the original data points in favor of some global structure.
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Smoothing splines

Smoothing splines impose global structure by regularization or

penalization. Instead of minimizing RSS ( f ), we now try to minimize

PRSS ( f ) =

K
∑

k=1

(yk − f (xk))
2 + λ

∫

[ f ′′(t)]2dt = RSS ( f ) + λJ( f )

A function f (x) minimizing PRSS provides a compromise between a

regression spline fit and a linear fit.

• If λ ≈ 0, the RSS ( f ) term is emphasized, and the fit will be “close

to” the data, jittery (little control over f ′′(x)), and have low bias and

high variance.

• If λ ( 0, th J( f ) term is emphasized and the fit will be smoothed

away from the data and towards a linear fit ( f ′′(x) forced to be close

to zero).
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It can be shown that the f (x) minimizing PRSS is a natural cubic spline,

as before:

s(x) =
K
∑

j=1

θ jN j(x).

Plugging this into PRSS, we immediately see

PRSS (s) = ("y − N("x)θ)T ("y − N("x))θ) + λθTΩNθ

where N = [Nj(xk)] jk as before, and ΩN has ( j, k)
th entry

∫

Nj(t)Nk(t)dt.

This has solution

θ̂ = (N("x)TN("x) + λΩN )
−1N("x)T"y
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Once again, the fitted values ŷ0 are

ŷ = N("x)θ̂ = N("x)(N("x)TN("x) + λΩN )
−1N("x)T y = S λy,

so again s(x) is a linear smoother.

The matrix S λ is again analogous to the hat matrix H = X(X
TX)−1XT in

linear regression.

Another common linear smoother is the kernel regression estimator

fλ(x) =

∑n
i=0 yiK

(

x−xi
λ

)

∑n
i=0 K

(

x−xi
λ

)

as are other (locally) weighted regression schemes such as lowess.

• The big question for smoothing splines, kernel regression, etc., is how to

choose the smoothing parameter λ, to minimize the RSS , or equivalently the

mean squared error of prediction (MSE).

• A common and effective way to do this is with cross validation.
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MSE and the Bias-Variance Tradeoff

Let T = ((x1, y1), . . . , (xn, yn)) be a training set on which we train our predictor
ŷi = f̂ (xi). Let y0 = f (x0) represent a new pair, or test point. We can write the

mean-squared error in predicting y0 ≈ ŷ0 = f̂ (x0) as

MSE(x0)
= ET [( f (x0) − ŷ0)

2]

= ET [(ŷ0 − ET (ŷ0))
2] + [ET (ŷ0) − f (x0)]

2

= Var T (ŷ0) + Bias
2

(We try to choose the model—or model

complexity—that minimizes MSE.)
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Why Do We Need Training Set and Test Set?
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• Here we built linear regression

functions to classify two kinds of

observations (red and green cirl-

ces).

• The figure compares linear,

quadratic and cubic linear models.

• You can see that the prediction

MSE on the test data is more like

the ideal MSE curve, than the MSE

on the training data alone.

We can always drive the bias down by making the model more complex.

Estimating MSE on the same data that the model was fitted on tends to

under-estimate the variance in fitting new data, so estimates of MSE on the

training data are usually too optimistic.
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K-fold Cross-Validation

• We can see from the MSE plot on the previous page that the error on the

training data is likely to be too optimistic.

• That calculation was based on dividing data into large “training” and

“testing” samples. Train on one sample, estimate the error rate on the other.

• A better estimate of MSE would average over several training and test sets.

But data is scarce! An efficient way to re-use a single data set for this

purpose is K-fold cross-validation:

– Divide up the data into K roughly-equal-sized parts.

– Let f̂ (x)−k be the fitted value (classification, prediction, etc.) for x with

the kth part of the data removed, and let k(i) be the part of the data

containing xi.

– Then the K-fold cross-validation criterion is

CV =
1

N

N
∑

i=1

L(y, f̂ −k(i)(xi))

where L(y, ŷ) is some appropriate loss function [e.g. L(y, ŷ) = (y − ŷ)2, if

we are interested in MSE].
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Choosing the number K of cross validation groups

CV can also be interpreted as trying to estimate the true error rate of the optimal

f (x)opt:

Error( fopt(·)) ≈
1

K

K
∑

k=1

Error( f̂ −k(·)) ≈
1

N

N
∑

k=1

L(y, f̂ −k(i)(xi)) = CV

• There is also a bias/variance tradeoff in CV estimates of prediction error:

– K large: Less bias for the true prediction error; but potentially high

variance because the N training sets are so similar to each other (hence

different f̂ ’s are highly dependent).

– K small: tends to reverse these effects (smaller variance, larger bias).

Often the point of diminishing returns in this bias/variance tradeoff is around

K = 5 or 10.

• K = N is called “leave-one-out” cross-validation. f̂ −k(x) least biased for

fopt(x) (largest training sets), but most variance over replicated data sets (the

training data sets are essentially all identical).
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Using Cross-Validation

• In principle, let α be any parameters of interest in f (x;α), and define

CVK(α) =
1

N

N
∑

k=1

L(y, f̂ −k(i)(xi;α))

• Can use cross-validation to estimate α̂ (e.g. gradient-descent, etc.).

This is sometimes done, but it is computationally expensive!

• Cross-validation is often useful for “tuning parameters” that are not

part of the main model fitting but have to be set in some way

– The list of variables/features to include in the model

– The roughness penalty in a penalized function estimation problem

– The degree of the polynomial in polynomial regression

– The number of neighbors in k-nn

– Etc.
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Aside. . .

• For many linear smoothers (ŷ = S y)

CVN =
1

N

N
∑

i=1

[yi − f̂
−i(xi)]

2 =
1

N

N
∑

i=1

[

yi − f̂ (xi)

1 − S ii

]2

≈
1

N

N
∑

i=1

[

yi − f̂ (xi)

1 − trace(S )/N

]2

≡ GCV

This is generalized cross-validation; it can be faster than CV, and it

tends to smooth a bit more (choose models with lower df=trace(S ))

than CV.
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Additive and Generalized Additive Models

The basic idea of the additive model is to fit a model of the form

E[Y |X1, . . . , Xp] = α + f1(X1) + · · · + fp(Xp)

by (penalized) least-squares or some similar method; thus the model is

Y = α +

p
∑

j=1

f j(Xj) + ε

where ε has mean zero and finite variance. The Xj may represent

interactions or other functions of the original input variables, so there is

scope for rather general model-fitting.

The functions f j(·) are estimated non-parametrically, usually as

smoothing splines or some other nonparametric regression approach.
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For specificity we consider cubic smoothing splines. If we have replications
(yi, xi1, . . . , xip), i = 1, . . . ,N, we write the penalized residual sum of squares as

PRSS (α, f1, . . . , fp) =

N
∑

i=1















yi − α −

p
∑

j=1

f j(xi j)















2

+

p
∑

j=1

λ j

∫

f ′′j (t j)
2dt j

where the λi are tuning parameters (controlling bias/variance tradeoff for amount
of smoothing).

The backfitting algorithm is a standard way to fit such models. Essentially it
repeatedly fits the cubic spline model (or whatever smoothing model is in use) to
the jth “deleted” residuals

r
( j)
i = yi − α̂ −

∑

k! j

f̂k(xik)

(i.e. we fit r
( j)
i = f̂ j(xi j) + εi).

It can be shown that PRSS is minimized by cubic smoothing splines f̂ j(x) with
knots at each of the unique values of xi j. The model can be identified by assuming

that
∑

i f̂ j(xi j) ≡ 0, ∀ j; which implies α̂ = y.

Additive models are again linear smoothers: ŷ = S y for some S = S λ1 ,...,λp that
plays the role of the “hat matrix”.

17 36-490 March 22, 2010

Generalized Additive Models

The general form of generalized additive models is

g(E[Y |X1, . . . , Xp]) = α + f1(X1) + · · · + fp(Xp)

together with stochastic model for observations. For example, the additive logistic

regression has the form

log
P[Y = 1|X1, . . . , Xp]

1 − P[Y = 1|X1, . . . , Xp]
= α + f1(X1) + · · · + fp(Xp)

with the model of Bernoulli (or equivalently Binomial) responses for each fixed

set of covariates X1, . . . , Xp.

The appropriate fitting criterion here is a penalized likelihood (rather than PRSS).

The usual IRLS procedure for fitting generalized linear models reduces the

nonlinear maximization to an iterative sequence of linear regression problems in

the f j(Xj)’s; the backfitting algorithm can be used in these linear regression

problems to find the f̂ j(x)’s in this case.

As with GLM’s, fitted GAM’s have a natural linear structure and may be treated

as linear smoothers: there is a matrix S λ such that g(ŷ) = S λy, d f = trace(S λ), etc.

18 36-490 March 22, 2010



Projection Pursuit Regression

This is a variation of additive models,

E[Y |X1, . . . , Xp] = f1(ω
T
1 X) + · · · + fM(ω

T
MX)

which we would again like to fit by least squares. The functions fm are estimated
by some smooth nonparmetric method (such as cubic smoothing splines). The
vectors ωm are of unit length and are estimated along with the fm’s. Note that X is
the entire vector of independent variables in the problem.

Essentially we want to fit by penalized least-squares again. A variation of the
backfitting algorithm is used:

• A single-term model E[Y |X1, . . . , Xp] = f1(ω
T
1 X) is estimated first, iterating

between choice of ω1 and fitting the smoothing spline fi() (using penalized
least-squares) until convergence.

• A second term f2(ω
T
2 X) is fitted to the residuals of the first model.

• The procedure continues until adding more terms does not appreciably
improve the fit of the model (e.g. via cross-validation).

• After a “full” set of terms are fitted, the term set may be pruned back in
backwards-selection style.
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