
Homework #3

36-754, Spring 2007

Due 14 May 2007

1 Convergence of the empirical CDF, uniform
samples

In this problem and the next, Xi are IID samples on the real line, with cumu-
lative distribution function F . The empirical distribution function F̂n is

F̂n(t) ≡ 1
n

n∑
i=1

1(−∞,t])(Xi)

and the empirical process is

Un(t) =
√

n[F̂n(t)− F (t)]

where t runs over the whole range of X. As n goes to infinity, Un converges
in distribution to a Gaussian process which depends only on F , and not on
n. Consequently, F̂n is in some sense converging on F at rate n−1/2. This
“empirical central limit theorem” is made precise in this problem and the next.

For the rest of this problem, we consider the special case where the Xi are
uniformly distributed on the unit interval, so that F (t) = t, 0 ≤ t ≤ 1.

Here the limiting form of Un is what’s generally called the Brownian bridge,
a real-valued process on [0, 1] defined by

B(t) = W (t)− tW (1)

where W is a standard Wiener process.

1. Show that E [B(t)] = 0 for all t, and that cov (B(s), B(t)) = s(1− t) when
0 ≤ s ≤ t ≤ 1.

2. Show that the Brownian bridge is a Gaussian process.

3. Show that, for all n and all 0 ≤ s ≤ t ≤ 1, E [Un(t)] = 0, cov (Un(s), Un(t)) =
s(1− t).

4. Show that Un
fd→ B. One way is to use the multivariate central limit

theorem.
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5. Show that Un
d→ B (in the Skorokohod sense). One way is to use Propo-

sition 201 from §15.1. Hint: think about Chebyshev’s inequality, as in
§16.2.2. This is the “empirical central limit theorem” for the uniform
distribution.

2 Convergence of the empirical CDF, continued

Now suppose that Xi have a non-uniform distribution, with cumulative distri-
bution function F . Define the quantile function

qF (p) ≡ supx : F (x) < p

1. Let Zi be IID uniform. Show that q(Zi)
d= Xi.

2. Define a map H : D([0, 1]) 7→ D(R+) by Hw(x) = w(F (x)). Show that

sup
x
|Hw(x)−Hv(x)| ≤ sup

x
|w(x)− v(x)|

so that H is uniformly continuous.

3. Let BF = HB, where B is the Brownian bridge. Show that E [BF (t)] = 0
for all t, that cov (BF (s), BF (t)) = F (s)(1 − F (t)), and that BF is a
Gaussian process.

4. Show that Un
d→ BF . One approach is to use the previous problem and

the continuous mapping theorem.

5. Using the result of exercise 16.2 in Kallenberg, show that, for each ε > 0,

P
(

sup
t
|F̂n(t)− F (t)| > ε

)
→ 0

as n →∞.

6. The result of the previous part is similar to, but not the same as, the
Glivenko-Cantelli Theorem, which asserts that

sup
t
|F̂n(t)− F (t)| → 0

almost surely, as n → ∞ (see e.g. Proposition 4.24 on p. 75 of Kallen-
berg). However, it does much of the same work as the Glivenko-Cantelli
Theorem, by establishing that the empirical distribution function is “prob-
ably approximately correct”. Explain exactly how the Glivenko-Cantelli
Theorem is stronger than the convergence-in-probability result you have
just proved; that is, what behavior for F̂n is possible according to your
result but forbidden by Glivenko-Cantelli?

7. Extra credit: do exercise 16.2 in Kallenberg.
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3 Simulation and p-Values

1. The functional central limit theorem tells us that rescaled random walks
Yn converge in distribution on the Wiener process W . Show that the trans-
formed rescaled walks, Bn(t) = Yn(t) − tYn(1), converge in distribution
on the Brownian bridge B(t) = W (t)− tW (1).

2. Write a program to simulate the Brownian bridge. (One approach is to
use the previous part, but if you can think of another way to do this, feel
free to use it, with an argument for why it works.)

3. Use your simulator to get an approximate distribution for B∗ ≡ supt∈[0,1] |B(t)|.
Can you identify the form of this distribution?

4. Write a program to simulate taking n samples from a uniform distribution
on the unit interval, and to calculate Dn = supt∈[0,1]

√
n|F̂n(t)− t|.

5. Using the second simulator, approximate the distribution of Dn for n =
10, 100, 1000 and 10, 000. Compare these distributions to the one you got
for B∗. Are they converging? Should they be?

6. Extra credit: There is an analytical expression — a convergent series with
infinitely many terms — for the cumulative distribution function of B∗;
find it. (Hints: Express the event B∗ ≤ a in terms of the underlying
Wiener process, and use the principle of inclusion-exclusion. This one is
hard!)

4 “The square of dW is dt”

Let W be a standard Wiener process, and t an arbitrary positive real number.
For each n, let ti = it2−n.

1. Show that
∑

i (∆W (ti))
2 converges on t (in L2) as n grows. Hint: Show

that the terms in the sum are IID, and that their variance shrinks suffi-
ciently fast as n grows. (You will need the fourth moment of a Gaussian
distribution.)

2. If X(t) is measurable, non-anticipating and square-integerable, show that

lim
n

2n−1∑
i=0

X(ti)(∆W (ti))
2 =

∫ t

0

X(s)ds (1)

in L2.

3



5 Diffusion approximation to a branching pro-
cess

In a branching process, we model the growth or decay of a population of iden-
tical objects, conventionally called “particles”. (These models can be applied
in genetics, ecology, chemistry, astrobiology and, most spectacularly, nuclear
engineering.) Particles persist for a random length of time, and at each time
step during which a particle is around, it produces a random, possibly zero,
number of further particles (“offspring”), independently of what other particles
are doing and of what it did at other times. That is, if we write Xn for the total
number of particles at the nth time-step, then

Xn+1 =
Xn∑
i=1

Yin

where the Yin ≥ 0 are all independent and identically distributed random in-
tegers. (If Yin = 0, then particle i died at time-step n without offspring. If
Yin = 1, then either i lived without offspring, or it died after producing one child
— since all particles are identical it doesn’t matter which.) Write E [Yin] = µ,
Var [Yin] = σ2, both finite.

Throughout, assume the branching process always begins with a single par-
ticle, X0 = 1.

1. Show that X is a Markov chain, regardless of the distribution of the Yin.

2. Show that
E [Xn+1 −Xn|Xn = x] = (µ− 1)x

and that
Var [Xn+1 −Xn|Xn = x] = σ2x

3. Find the time-evolution operator K, i.e.,

E [f(Xn+1)|Xn = x] = Kf(x)

For what functions f is this well-defined?

4. Consider a sequence of branching processes X(k) where µk = 1 + µ/k and
σ2

k = σ2/k. Define a continuous-time process Z(k)(t) by

Z(k)(t) =
X

(k)
bktc

k

Show that, as k → ∞, Z(k)(t) converges in distribution on a Gaussian
random variable, and find the mean and variance in terms of µ and σ2.

5. Show that Z(k) d→ Z, a Feller process whose generator G is

c1x
∂

∂x
+ c2x

∂2

∂x2

and find c1 and c2 in terms of µ and σ2.
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6 The White Noise Model and Non-Parametric
Regression

Let f and σ be two continuous, measurable real functions on the unit interval.
When the independent variable is x ∈ [0, 1], we observe Y = f(x) + ε, where
ε are IID noise terms with mean 0 and variance σ2(x). (That is, the noise is
heteroskedastic.) This problem relates estimating the regression function f to
estimating the coefficients of a small-noise SDE. For each positive integer n,
xni = i/n, 0 ≤ i < n. Then Yni = f(xni) + εni, εni ∼ N (0, σ2(xni)). Define the
continuous-parameter process

Rn(t) ≡ 1
n

bntc∑
i=1

Yni

1. Show that, for each fixed t,

Rn(t) d→
∫ t

0

f(s)ds +
1√
n

∫ t

0

σ(s)dW

2. Define Zn as the solution to the SDE dZn = f(t)dt + n−1/2σ(t)dW , with
initial condition Zn(0) = 0. Show that each Zn is a Gaussian diffusion.

3. The previous two parts suggest that Rn and Zn should be converging.
One form of this convergence would be

P

(
sup

t∈[0,1]

|Rn(t)− Zn(t)| > δ

)
→ 0

as n →∞. Prove this, or find a counter-example.

4. Let φi, i = 1, 2, . . . be an orthonormal basis for L2([0, 1]), i.e.,∫
φi(x)φj(x)dx = δij

For each φi, define

θi =
∫

f(x)φi(x)dx

Show that
θi =

∫
φi(t)dZn(t) + n−1/2ηi

where ηi is a mean-zero Gaussian random variable. Your proof should
also include an expression for the variance of ηi, and show that it does not
change with n. Are the ηi independent? (Hint: Use Itô’s isometry.)

This correspondence between non-parametric regression and white-noise prob-
lems can be extended to include the case where the design points xni are not
evenly spaced, and in fact to where they are randomly positioned.
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