
Chapter 5

Stationary One-Parameter
Processes

Section 5.1 describes the three main kinds of stationarity: strong,
weak, and conditional.

Section 5.2 relates stationary processes to the shift operators in-
troduced in the last chapter, and to measure-preserving transforma-
tions more generally.

5.1 Kinds of Stationarity

Stationary processes are those which are, in some sense, the same at different
times — slightly more formally, which are invariant under translation in time.
There are three particularly important forms of stationarity: strong or strict,
weak, and conditional.

Definition 49 (Strong Stationarity) A one-parameter process is strongly
stationary or strictly stationary when all its finite-dimensional distributions are
invariant under trnaslation of the indices. That is, for all τ ∈ T , and all
J ∈ Fin(T ),

L (XJ) = L (XJ+τ ) (5.1)

Notice that when the parameter is discrete, we can get away with just check-
ing the distributions of blocks of consecutive indices.

Definition 50 (Weak Stationarity) A one-parameter process is weakly sta-
tionary or second-order stationary when, for all t ∈ T ,

E [Xt] = E [X0] (5.2)

and for all t, τ ∈ T ,

E [XτXτ+t] = E [X0Xt] (5.3)
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At this point, you should check that a weakly stationary process has time-
invariant correlations. (We will say much more about this later.) You should
also check that strong stationarity implies weak stationarity. It will turn out
that weak and strong stationarity coincide for Gaussian processes, but not in
general.

Definition 51 (Conditional (Strong) Stationarity) A one-parameter pro-
cess is conditionally stationary if its conditional distributions are invariant un-
der time-translation: ∀n ∈ N, for every set of n + 1 indices t1, . . . tn+1 ∈ T ,
ti < ti+1, and every shift τ ,

L
(
Xtn+1 |Xt1 , Xt2 . . . Xtn

)
= L

(
Xtn+1+τ |Xt1+τ , Xt2+τ . . . Xtn+τ

)
(5.4)

(a.s.).

Strict stationarity implies conditional stationarity, but the converse is not
true, in general. (Homogeneous Markov processes, for instance, are all con-
ditionally stationary, but most are not stationary.) Many methods which are
normally presented using strong stationarity can be adapted to processes which
are merely conditionally stationary.1

Strong stationarity will play an important role in what follows, because it
is the natural generaliation of the IID assumption to situations with dependent
variables — we allow for dependence, but the probabilistic set-up remains, in a
sense, unchanging. This will turn out to be enough to let us learn a great deal
about the process from observation, just as in the IID case.

5.2 Strictly Stationary Processes and Measure-
Preserving Transformations

The shift-operator representation of Section 4.2 is particularly useful for strongly
stationary processes.

Theorem 52 (Stationarity is Shift-Invariance) A process X with measure
µ is strongly stationary if and only if µ is shift-invariant, i.e., µ = µ ◦ Σ−1

τ for
all Στ in the time-evolution semi-group.

Proof: “If” (invariant distributions imply stationarity): For any finite col-
lection of indices J , L (XJ) = µ ◦ π−1

J (Lemma 25), and similarly L (XJ+τ ) =
µ ◦ π−1

J+τ .

πJ+τ = πJ ◦ Στ (5.5)
π−1

J+τ = Σ−1
τ ◦ π−1

J (5.6)

µ ◦ π−1
J+τ = µ ◦ Σ−1

τ ◦ π−1
J (5.7)

L (XJ+τ ) = µ ◦ π−1
J (5.8)

= L (XJ) (5.9)
1For more on conditional stationarity, see Caires and Ferreira (2005).



CHAPTER 5. STATIONARY PROCESSES 36

“Only if”: The statement that µ = µ ◦ Σ−1
τ really means that, for any

set A ∈ X T , µ(A) = µ(Σ−1
τ A). Suppose A is a finite-dimensional cylinder

set. Then the equality holds, because all the finite-dimensional distributions
agree (by hypothesis). But this means that X and ΣτX are two processes
with the same finite-dimensional distributions, and so their infinite-dimensional
distributions agree (Theorem 23), and the equality holds on all measurable sets
A. !

This can be generalized somewhat.

Definition 53 (Measure-Preserving Transformation) A measurable map-
ping F from a measurable space Ξ,X into itself preserves measure µ iff, ∀A ∈ X ,
µ(A) = µ(F−1A), i.e., iff µ = µ◦F−1. This is true just when F (X) d= X, when
X is a Ξ-valued random variable with distribution µ. We will often say that
F is measure-preserving, without qualification, when the context makes it clear
which measure is meant.

Remark on the definition. It is natural to wonder why we write the defining
property as µ = µ ◦ F−1, rather than µ = µ ◦ F . There is actually a subtle
difference, and the former is stronger than the latter. To see this, unpack the
statements, yielding respectively

∀A ∈ X , µ(A) = µ(F−1(A)) (5.10)
∀A ∈ X , µ(A) = µ(F (A)) (5.11)

To see that Eq. 5.10 implies Eq. 5.11, pick any measurable set B, and then
apply 5.10 to F (B) (which is ∈ X , because F is measurable). To go the other
way, from 5.11 to 5.10, it would have to be the case that, ∀A ∈ X , ∃B ∈ X such
that A = F (B), i.e., every measurable set would have to be the image, under
F , of another measurable set. This is not necessarily the case; it would require,
for starters, that F be onto (surjective).

Theorem 52 says that every stationary process can be represented by a
measure-preserving transformation, namely the shift. Since measure-preserving
transformations arise in many other ways, however, it is useful to know about
the processes they generate.

Corollary 54 (Measure-preservation implies stationarity) If F is a measure-
preserving transformation on Ξ with invariant measure µ, and X is a Ξ-valued
random variable, L (X) = µ, then the sequence Fn(X), n ∈ N is strongly sta-
tionary.

Proof: Consider shifting the sequence Fn(X) by one: the nth term in the
shifted sequence is Fn+1(X) = Fn(F (X)). But since L (F (X)) = L (X), by
hypothesis, L

(
Fn+1(X)

)
= L (Fn(X)), and the measure is shift-invariant. So,

by Theorem 52, the process Fn(X) is stationary.
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5.3 Exercises

Exercise 5.1 (Functions of Stationary Processes) Use Corollary 54 to
show that if g is any measurable function on Ξ, then the sequence g(Fn(X)) is
also stationary.

Exercise 5.2 (Continuous Measure-Preserving Families of Transfor-
mations) Let Ft, t ∈ R+, be a semi-group of measure-preserving transforma-
tions, with F0 being the identity. Prove the analog of Corollary 54, i.e., that
Ft(X), t ∈ R+, is a stationary process.

Exercise 5.3 (The Logistic Map as a Measure-Preserving Transforma-
tion) The logistic map with a = 4 is a measure-preserving transformation, and
the measure it preserves has the density 1/π

√
x(1− x) (on the unit interval).

1. Verify that this density is invariant under the action of the logistic map.

2. Simulate the logistic map with uniformly distributed X0. What happens to
the density of Xt as t →∞?


