
Chapter 10

Alternative
Characterizations of
Markov Processes

This lecture introduces two ways of characterizing Markov pro-
cesses other than through their transition probabilities.

Section 10.1 describes discrete-parameter Markov processes as
transformations of sequences of IID uniform variables.

Section 10.2 describes Markov processes in terms of measure-
preserving transformations (Markov operators), and shows this is
equivalent to the transition-probability view.

10.1 Markov Sequences as Transduced Noise

A key theorem says that discrete-time Markov processes can be viewed as the
result of applying a certain kind of filter to pure noise.

Theorem 114 Let X be a one-sided discrete-parameter process taking values in
a Borel space Ξ. X is Markov iff there are measurable functions fn : Ξ×[0, 1] "→
Ξ such that, for IID random variables Zn ∼ U(0, 1), all independent of X1,
Xn+1 = fn(Xn, Zn) almost surely. X is homogeneous iff fn = f for all n.

Proof: Kallenberg, Proposition 8.6, p. 145. Notice that, in order to get the
“only if” direction to work, Kallenberg invokes what we have as Proposition 26,
which is where the assumptions that Ξ is a Borel space comes in. You should
verify that the “if” direction does not require this assumption. !

Let us stick to the homogeneous case, and consider the function f in some-
what more detail.
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In engineering or computer science, a transducer is an apparatus — really, a
function — which takes a stream of inputs of one kind and produces a stream
of outputs of another kind.

Definition 115 (Transducer) A (deterministic) transducer is a sextuple 〈Σ,Υ,Ξ, f, h, s0〉
where Σ, Υ and Ξ are, respectively, the state, input and output spaces, f : Σ×
Ξ "→ Σ is the state update function or state transition function, h : Σ×Υ "→ Ξ
is the measurement or observation function, and s0 ∈ Σ is the starting state.
(We shall assume both f and h are always measurable.) If h does not depend
on its state argument, the transducer is memoryless. If f does not depend on
its state argument, the transducer is without after-effect.

It should be clear that if a memoryless transducer is presented with IID
inputs, its output will be IID as well. What Theorem 114 says is that, if
we have a transducer with memory (so that h depends on the state) but is
without after-effect (so that f does not depend on the state), IID inputs will
produce Markovian outputs, and conversely any reasonable Markov process can
be represented in this way. Notice that if a transducer is without memory,
we can replace it with an equivalent with a single state, and if it is without
after-effect, we can identify Σ and Ξ.

Notice also that the two functions f and h determine a transition func-
tion where we use the input to update the state: g : Σ × Υ "→ Σ, where
g(s, y) = f(s, h(s, y)). Thus, if the inputs are IID and uniformly distributed,
then (Theorem 114) the successive states of the transducer are always Marko-
vian. The question of which processes can be produced by noise-driven transduc-
ers is this intimately bound up with the question of Markovian representations.
While, as mentioned, quite general stochastic processes can be put in this form
(Knight, 1975, 1992), it is not necessarily possible to do this with a finite in-
ternal state space Σ, even when Ξ is finite. The distinction between finite and
infinite Σ is crucial to theoretical computer science, and we might come back to
it later, but

Two issues suggest themselves in connection with this material. One is
whether, given a two-sided process, we can pull the same trick, and represent a
Markovian X as a transformation of an IID sequence extending into the infinite
past. (Remember that the theorem is for one-sided processes, and starts with
an initial X1.) This is more subtle than it seems at first glance, or even than it
seemed to Norbert Wiener when he first posed the question (Wiener, 1958); for
a detailed discussion, see Rosenblatt (1971), and, for recent set of applications,
Wu (2005). The other question is whether the same trick can be pulled in
continuous time; here much less is known.
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10.2 Time-Evolution (Markov) Operators

Let’s look again at the evolution of the one-dimensional distributions for a
Markov process:

νs = νtµt,s (10.1)

νs(B) =
∫

νt(dx)µt,s(x, B) (10.2)

The transition kernels define linear operators taking probability measures on Ξ
to probability measures on Ξ. This can be abstracted.

Definition 116 (Markov Operator on Measures) Take any measurable
space Ξ,X . A Markov operator on measures is an operator M which takes
finite measures on this space to other finite measures on this space such that

1. M is linear, i.e., for any a1, a2 ∈ [0, 1] and any two measures µ1, µ2,

M(a1µ1 + a2µ2) = a1Mµ1 + a2Mµ2 (10.3)

2. M is norm-preserving, i.e., Mµ(Ξ) = µ(Ξ).

(In particular P must take probability measures to probability measures.)

Definition 117 (Markov Operator on Densities) Take any probability space
Ξ,X , µ, and let L1 be as usual the class of all µ-integrable generalized functions
on Ξ. A linear operator P : L1 "→ L1 is a Markov operator on densities when:

1. If f ≥ 0 (a.e. µ), Pf ≥ 0 (a.e. µ).

2. If f ≥ 0 (a.e. µ), ‖Pf‖ = ‖f‖.

By “a Markov operator” I will often mean a Markov operator on densities,
with the reference measure µ being some suitable uniform distribution on Ξ.
However, the general theory applies to operators on measures.

Lemma 118 (Markov Operators on Measures Induce Those on Densi-
ties) Let M be a Markov operator on measures. If M takes measures absolutely
continuous with respect to µ to measures absolutely continuous with respect to
µ, i.e., it preserves domination by µ, then it induces an almost-unique Markov
operator P on densities with respect to µ.

Proof: Let f be a function which is in L1(µ) and is non-negative (µ-a.e.).
If f ≥ 0 µ a.e., the set function νf (A) =

∫
A f(x)dµ is a finite measure which

is absolutely continuous with respect to µ. (Why is it finite?) By hypothesis,
then, Mνf is another finite measure which is absolutely continuous with respect
to µ, and νf (Ξ) = Mνf (Ξ). Hence, by the Radon-Nikodym theorem, there is an
L1(µ) function, call it Pf , such that Mνf (A) =

∫
A Pf(x)dµ. (“Almost unique”
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refers to the possibility of replacing Pf with another version of dMνf/dµ.)
In particular, Pf(x) ≥ 0 for µ-almost-all x, and so ‖Pf‖ =

∫
Ξ |Pf(x)|dµ =

Mνf (Ξ) = νf (Ξ) =
∫
Ξ |f(x)|dµ = ‖f‖. Finally, the linearity of the operator on

densities follows directly from the linearity of the operator on measures and the
linearity of integration. If f is sometimes negative, apply the reasoning above
to f+ and f−, its positive and negative parts, and then use linearity again.!

Recall from Definition 30 that, for an arbitrary kernel κ, κf(x) is defined as∫
f(y)κ(x, dy). Applied to our transition kernels, this suggests another kind of

operator.

Definition 119 (Transition Operators) Take any measurable space Ξ,X ,
and let B(Ξ) be the class of bounded measurable functions. An operator K :
B(Ξ) "→ B(Ξ) is a transition operator when:

1. K is linear

2. If f ≥ 0 (a.e. µ), Kf ≥ 0 (a.e. µ)

3. K1Ξ = 1Ξ.

4. If fn ↓ 0, then Kfn ↓ 0.

Definition 120 (L∞ Transition Operators) For a probability space Ξ,X , µ,
an L∞-transition operator is an operator on L∞(µ) satisfying points (1)–(4) of
Definition 119.

Note that every function in B(Ξ) is in L∞(µ) for each µ, so the definition
of an L∞ transition operator is actually stricter than that of a plain transition
operator. This is unlike the case with Markov operators, where the L1 version
is weaker than the unrestricted version.

Lemma 121 (Kernels and Operators) Every probability kernel κ from Ξ to
Ξ induces a Markov operator M on measures,

Mν = νκ (10.4)

and every Markov operator M on measures induces a probability kernel κ,

κ(x, B) = Mδx(B) (10.5)

Similarly, every transition probability kernel induces a transition operator K on
functions,

Kf(x) = κf(x) (10.6)

and every transition operator K induces a transition probability kernel,

κ(x, B) = K1B(x) (10.7)
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Proof: Exercise 10.1. !
Now we need some basic concepts from functional analysis; see, e.g., Kol-

mogorov and Fomin (1975) for background.

Definition 122 (Functional) A functional is a map g : V "→ R, that is, a
real-valued function of a function. A functional g is

• linear when g(af1 + bf2) = ag(f1) + bg(f2);

• continuous when fn → f implies g(fn) → f ;

• bounded by M when |g(f)| ≤ M for all f ∈ V ;

• bounded when it is bounded by M for some M ;

• non-negative when g(f) ≥ 0 for all f ;

etc.

Definition 123 (Conjugate or Adjoint Space) The conjugate space or ad-
joint space of a vector space V is the space V † of its continuous linear function-
als. For f ∈ V and g ∈ V †, 〈f, g〉 denotes g(f). This is sometimes called the
inner product.

Proposition 124 (Conjugate Spaces are Vector Spaces) For every V , V †

is also a vector space.

Proposition 125 (Inner Product is Bilinear) For any a, b, c, d ∈ R, any
f1, f2 ∈ V and any g1, g2 ∈ V †,

〈af1 + bf2, cg1 + dg2〉 = ac〈f1, g1〉+ ad〈f1, g2〉+ bc〈f2, g1〉+ bd〈f2, g2〉 (10.8)

Proof: Follows from the fact that V † is a vector space, and each gi is a
linear operator. !

You are already familiar with an example of a conjugate space.

Example 126 (Vectors in Rn) The vector space Rn is self-conjugate. If g($x)
is a continuous linear function of $x, then g($x) =

∑n
i=1 yixi for some real con-

stants yi, which means g($x) = $y · $x.

Here is the simplest example where the conjugate space is not equal to the
original space.

Example 127 (Row and Column Vectors) The space of row vectors is con-
jugate to the space of column vectors, since every continuous linear functional
of a column vector x takes the form of yTx for some other column vector y.
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Example 128 (Lp spaces) The function spaces Lp(µ) and Lq(µ) are conjugate
to each other, when 1/p + 1/q = 1, and the inner product is defined through

〈f, g〉 ≡
∫

fgdµ (10.9)

In particular, L1 and L∞ are conjugates.

Example 129 (Measures and Functions) The space of Cb(Ξ) of bounded,
continuous functions on Ξ and the spaces M(Ξ,X ) of finite measures on Ξ are
conjugates, with inner product

〈µ, f〉 =
∫

fdµ (10.10)

Definition 130 (Adjoint Operator) For conjugate spaces V and V †, the
adjoint operator, O†, to an operator O on V is an operator on V † such that

〈Of, g〉 = 〈f,O†g〉 (10.11)

for all f ∈ V, g ∈ V †.

Proposition 131 (Adjoint of a Linear Operator) If O is a continuous
linear operator on V , then its adjoint O† exists and is linear.

Lemma 132 (Markov Operators on Densities and L∞ Transition Op-
erators) Every Markov operator P on densities induces an L∞ transition op-
erator U on essentially-bounded functions, and vice versa.

Proof: Exercise 10.2. !
Clearly, if κ is part of a transition kernel semi-group, then the collection of

induced Markov operators and transition operators also form semi-groups.

Theorem 133 (Transition operator semi-groups and Markov processes)
Let X be a Markov process with transition kernels µt,s, and let Kt,s be the cor-
responding semi-group of transition operators. Then for any f ∈ B(Ξ),

E [f(Xs)|Ft] = (Kt,sf)(Xt) (10.12)

Conversely, let X be any stochastic process, and let Kt,s be a semi-group of tran-
sition operators such that Equation 10.12 is valid (a.s.). Then X is a Markov
process.



CHAPTER 10. MARKOV CHARACTERIZATIONS 76

Proof: Exercise 10.3. !
Remark. The proof works because the expectations of all B(Ξ) functions

together determine a probability measure. (Recall that P (B) = E [1B ], and
indicators are bounded everywhere.) If we knew of another collection of func-
tions which also sufficed to determine a measure, then linear operators on that
collection would work just as well, in the theorem, as do the transition oper-
ators, which by definition apply to all of B(Ξ). In particular, it is sometimes
possible to define operators only on much smaller, more restricted collections of
functions, which can have technical advantages. See Ethier and Kurtz (1986,
ch. 4, sec. 1) for details.

The next two lemmas are useful in establishing asymptotic results.

Lemma 134 (Markov Operators are Contractions) For any Markov op-
erator P and f ∈ L1,

‖Pf‖ ≤ ‖f‖ (10.13)

Proof (after Lasota and Mackey (1994, prop. 3.1.1, pp. 38–39)): First,
notice that (Pf(x))+ ≤ Pf+(x), because

(Pf(x))+ = (Pf+ − Pf−)+ = max (0, Pf+ − Pf−) ≤ max (0, Pf+) = Pf+

Similarly (Pf(x))− ≤ Pf−(x). Therefore |Pf | ≤ P |f |, and then the statement
follows by integration. !

Lemma 135 (Markov Operators Bring Distributions Closer) For any
Markov operator, and any f, g ∈ L1, ‖Pnf − Png‖ is non-increasing.

Proof: By linearity, ‖Pnf −Png‖ = ‖Pn(f − g)‖. By the definition of Pn,
‖Pn(f − g)‖ = ‖PPn−1(f − g)‖. By the contraction property (Lemma 134),
‖PPn−1(f − g)‖ ≤ ‖Pn−1(f − g)‖ = ‖Pn−1f − Pn−1g‖ (by linearity again). !

Theorem 136 (Invariant Measures Are Fixed Points) A probability mea-
sure ν is invariant for a homogeneous Markov process iff it is a fixed point of
all the Markov operators, Mtν = ν.

Proof: Clear from the definitions! !

10.3 Exercises

Exercise 10.1 (Kernels and Operators) Prove Lemma 121. Hints: 1. You
will want to use the fact that 1A ∈ B(Ξ) for all measurable sets A. 2. In going
back and forth between transition kernels and transition operators, you may find
Proposition 32 helpful.

Exercise 10.2 (L1 and L∞) Prove Lemma 132.
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Exercise 10.3 (Operators and Expectations) Prove Theorem 133. Hint:
in showing that a collection of operators determines a Markov process, try using
mathematical induction on the finite-dimensional distributions.

Exercise 10.4 (Bayesian Updating as a Markov Process) Consider a
simple version of Bayesian learning, where the set of hypotheses Θ is finite, and,
for each θ ∈ Θ, fθ(x) is a probability density on Ξ with respect to a common
dominating measure, µ say, and the Ξ-valued data X1, X2, . . . are all IID, both
under the hypotheses and in reality. Given a prior probability vector π0 on Θ,
the posterior πn is defined via Bayes’s rule:

πn(θ) =
π0(θ)

∏n
i=1 fθ(Xi)∑

θ∈Θ π0(θ)
∏n

i=1 fθ(Xi)

1. Prove that the random sequence π1,π2, . . . is adapted to {F}t if X is
adapted.

2. Prove that the sequence of posterior distributions is Markovian with respect
to its natural filtration.

3. Is this still a Markov process if X is not IID? If the hypotheses θ do not
model X as IID?

4. When, if ever, is the Markov process homogeneous? (If it is sometimes
homogeneous, you may give either necessary or sufficient conditions, as
you find easier.)

Exercise 10.5 (More on Bayesian Updating) Consider a more complicated
version of Bayesian updating. Let T be one-sided, H be a Θ-valued random
variable, and {G}t be any filtration. Assume that πt = L (H|Gt) is a regular
conditional probability distribution on Θ for all t and all ω. As before, π0 is the
prior. Prove that πt is Markovian with respect to {G}t. (Hint: E [E [Y |Gt] |Gs] =
E [X|Gs] a.s., when s ≤ t and Y ∈ L1 so the expectations exist.)


