
Chapter 21

Large Deviations for
Small-Noise Stochastic
Differential Equations

This lecture is at once the end of our main consideration of dif-
fusions and stochastic calculus, and a first taste of large deviations
theory. Here we study the divergence between the trajectories pro-
duced by an ordinary differential equation, and the trajectories of the
same system perturbed by a small amount of uncorrelated Gaussian
noise (“white noise”; see Sections 22.1 and 22.2.1).

Section 21.1 establishes that, in the small noise limit, the SDE’s
trajectories converge in probability on the ODE’s trajectory. This
uses Feller-process convergence.

Section 21.2 upper bounds the rate at which the probability of
large deviations goes to zero as the noise vanishes. The methods are
elementary, but illustrate deeper themes to which we will recur once
we have the tools of ergodic and information theory.

In this chapter, we will use the results we have already obtained about
SDEs to give a rough estimate of a basic problem, frequently arising in practice1

namely taking a system governed by an ordinary differential equation and seeing
how much effect injecting a small amount of white noise has. More exactly,
we will put an upper bound on the probability that the perturbed trajectory
goes very far from the unperturbed trajectory, and see the rate at which this

1For applications in statistical physics and chemistry, see Keizer (1987). For applications
in signal processing and systems theory, see Kushner (1984). For applications in nonparamet-
ric regression and estimation, and also radio engineering (!) see Ibragimov and Has’minskii
(1979/1981). The last book is especially recommended for those who care about the connec-
tions between stochastic process theory and statistical inference, but unfortunately expound-
ing the results, or even just the problems, would require a too-long detour through asymptotic
statistical theory.
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probability goes to zero as the amplitude ε of the noise shrinks; this will be
O(e−Cε2). This will be our first illustration of a large deviations calculation. It
will be crude, but it will also introduce some themes to which we will return
(inshallah!) at greater length towards the end of the course. Then we will see
that the major improvement of the more refined tools is to give a lower bound
to match the upper bound we will calculate now, and see that we at least got
the logarithmic rate right.

I should say before going any further that this example is shamelessly ripped
off from Freidlin and Wentzell (1998, ch. 3, sec. 1, pp. 70–71), which is the
book on the subject of large deviations for continuous-time processes.

21.1 Convergence in Probability of SDEs to ODEs

To begin with, consider an unperturbed ordinary differential equation:

d

dt
x(t) = a(x(t)) (21.1)

x(0) = x0 ∈ Rd (21.2)

Assume that a is uniformly Lipschitz-continuous (as in the existence and unique-
ness theorem for ODEs, and more to the point for SDEs). Then, for the given,
non-random initial condition, there exists a unique continuous function x which
solves the ODE.

Now, for ε > 0, consider the SDE

dXε = a(Xε)dt + εdW (21.3)

where W is a standard d-dimensional Wiener process, with non-random ini-
tial condition Xε(0) = x0. Theorem 260 clearly applies, and consequently so
does Theorem 263, meaning Xε is a Feller diffusion with generator Gεf(x) =
ai(x)∂if ′(x) + ε2

2 ∇
2f(x).

Write X0 for the deterministic solution of the ODE.
Our first assertion is that Xε

d→ X0 as ε → 0. Notice that X0 is a Feller
process2, whose generator is G0 = ai(x)∂i. We can apply Theorem 205 on
convergence of Feller processes. Take the class of functions with bounded second
derivatives. This is clearly a core for G0, and for every Gε. For every function
f in this class,

‖Gεf −G0f‖∞ =
∥∥∥∥ai∂if(x) +

ε2

2
∇2f(x)− ai∂if(x)

∥∥∥∥
∞

(21.4)

=
ε2

2
∥∥∇2f(x)

∥∥
∞ (21.5)

2You can amuse yourself by showing this. Remember that Xy(t)
d→ Xx(t) is equivalent to

E [f(Xt)|X0 = y] → E [f(Xt)|X0 = x] for all bounded continuous f , and the solution of an
ODE depends continuously on its initial condition.
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which goes to zero as ε→ 0. But this is condition (i) of the convergence theorem,
which is equivalent to condition (iv), that convergence in distribution of the
initial condition implies convergence in distribution of the whole trajectory.
Since the initial condition is the same non-random point x0 for all ε, we have
Xε

d→ X0 as ε → 0. In fact, since X0 is non-random, we have that Xε
P→ X0.

That last assertion really needs some consideration of metrics on the space of
continuous random functions to make sense (see Appendix A2 of Kallenberg),
but once that’s done, the upshot is

Theorem 267 (Small-Noise SDEs Converge in Probability on No-Noise
ODEs) Let ∆ε(t) = |Xε(t)−X0(t)|. For every T > 0, δ > 0,

lim
ε→0

P
(

sup
0≤t≤T

∆ε(t) > δ

)
= 0 (21.6)

Or, using the maximum-process notation, for every T > 0,

∆(T )∗ P→ 0 (21.7)

Proof: See above. !
This is a version of the weak law of large numbers, and nice enough in its

own way. One crucial limitation, however, is that it tells us nothing about the
rate of convergence. That is, it leaves us clueless about how big the noise can
be, while still leaving us in the small-noise limit. If the rate of convergence were,
say, O(ε1/100), then this would not be very useful. (In fact, if the convergence
were that slow, we should be really suspicious of numerical solutions of the
unperturbed ODE.)

21.2 Rate of Convergence; Probability of Large
Deviations

Large deviations theory is essentially a study of rates of convergence in prob-
abilistic limit theorems. Here, we will estimate the rate of convergence: our
methods will be crude, but it will turn out that even more refined estimates
won’t change the rate, at least not by more than log factors.

Let’s go back to the difference between the perturbed and unperturbed tra-
jectories, going through our now-familiar procedure.

Xε(t)−X0(t) =
∫ t

0
[a(Xε(s))− a(X0(s))] ds + εW (t) (21.8)

∆ε(t) ≤
∫ t

0
|a(Xε(s))− a(X0(s))| ds + ε|W (t)| (21.9)

≤ Ka

∫ t

0
∆ε(s)ds + ε|W (t)| (21.10)

∆∗
ε (T ) ≤ εW ∗(T ) + Ka

∫ t

0
∆∗

ε (s)ds (21.11)
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Applying Gronwall’s Inequality (Lemma 258),

∆∗
ε (T ) ≤ εW ∗(T )eKaT (21.12)

The only random component on the RHS is the supremum of the Wiener process,
so we’re in business, at least once we take on two standard results, one about
the Wiener process itself, the other just about multivariate Gaussians.

Lemma 268 (A Maximal Inequality for the Wiener Process) For a
standard Wiener process, P (W ∗(t) > a) = 2P (|W (t)| > a).

Proof: Proposition 13.13 (pp. 256–257) in Kallenberg. !

Lemma 269 (A Tail Bound for Maxwell-Boltzmann Distributions) If
Z is a d-dimensional standard Gaussian (i.e., mean 0 and covariance matrix
I), then

P (|Z| > z) ≤ 2zd−2e−z2/2

2d/2Γ(d/2)
(21.13)

for sufficiently large z.

Proof: Each component of Z, Zi ∼ N (0, 1). So |Z| =
√∑d

i=1 Z2
i has the

density function (see, e.g., Cramér (1945, sec. 18.1, p. 236))

f(z) =
2

2d/2σdΓ(d/2)
zd−1e−

z2

2σ2

This is the d-dimensional Maxwell-Boltzmann distribution, sometimes called the
χ-distribution, because |Z|2 is χ2-distributed with d degrees of freedom. Notice
that P (|Z| ≥ z) = P

(
|Z|2 ≥ z2

)
, so we will be able to solve this problem in

terms of the χ2 distribution. Specifically, P
(
|Z|2 ≥ z2

)
= Γ(d/2, z2/2)/Γ(d/2),

where Γ(r, a) is the upper incomplete gamma function. For said function, for
every r, Γ(r, a) ≤ ar−1e−a for sufficiently large a (Abramowitz and Stegun,
1964, Eq. 6.5.32, p. 263). Hence (for sufficiently large z)

P (|Z| ≥ z) = P
(
|Z|2 ≥ z2

)
(21.14)

=
Γ(d/2, z2/2)

Γ(d/2)
(21.15)

≤
(
z2

)d/2−121−d/2e−z2/2

Γ(d/2)
(21.16)

=
2zd−2e−z2/2

2d/2Γ(d/2)
(21.17)

!
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Theorem 270 (Upper Bound on the Rate of Convergence of Small-
Noise SDEs) In the limit as ε→ 0, for every δ > 0, T > 0,

log P (∆∗
ε (T ) > δ) ≤ O(ε−2) (21.18)

Proof: Start by directly estimating the probability of the deviation, using
preceding lemmas.

P (∆∗
ε (T ) > δ) ≤ P

(
|W |∗(T ) >

δe−KaT

ε

)
(21.19)

= 2P
(
|W (T )| >

δe−KaT

ε

)
(21.20)

≤ 4
2d/2Γ(d/2)

(
δ2e−2KaT

ε2

)d/2−1

e−
δ2e−2KaT

2ε2 (21.21)

if ε is sufficiently small, so that ε−1 is sufficiently large to apply Lemma 269.
Now take the log and multiply through by ε2:

ε2 log P (∆∗
ε (T ) > δ) (21.22)

≤ ε2 log
4

2d/2Γ(d/2)
+ ε2

(
d

2
− 1

) [
log δ2e−2KaT − 2 log ε

]
− δ2e−2KaT

lim
ε↓0

ε2 log P (∆∗
ε (T ) > δ) ≤ −δ2e−2KaT (21.23)

since ε2 log ε→ 0, and the conclusion follows. !
Notice several points.

1. Here ε gauges the size of the noise, and we take a small noise limit. In many
forms of large deviations theory, we are concerned with large-sample (N →
∞) or long-time (T → ∞) limits. In every case, we will identify some
asymptotic parameter, and obtain limits on the asymptotic probabilities.
There are deviations inequalities which hold non-asymptotically, but they
have a different flavor, and require different machinery. (Some people are
made uncomfortable by an ε2 rate, and prefer to write the SDE dX =
a(X)dt +

√
εdW so as to avoid it. I don’t get this.)

2. The magnitude of the deviation δ does not change as the noise becomes
small. This is basically what makes this a large deviations result. There
is also a theory of moderate deviations.

3. We only have an upper bound. This is enough to let us know that the
probability of large deviations becomes exponentially small. But we might
be wrong about the rate — it could be even faster than we’ve estimated.
In this case, however, it’ll turn out that we’ve got at least the order of
magnitude correct.
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4. We also don’t have a lower bound on the probability, which is something
that would be very useful in doing reliability analyses. It will turn out
that, under many circumstances, one can obtain a lower bound on the
probability of large deviations, which has the same asymptotic dependence
on ε as the upper bound.

5. Suppose we’re right about the rate (which, it will turn out, we are), and
it holds both from above and below. It would be nice to be able to say
something like

P (∆∗
ε (T ) > δ)→ C1(δ, T )e−C2(δ,T )ε−2

(21.24)

rather than
ε2 log P (∆∗

ε (T ) > δ)→ −C2(δ, T ) (21.25)

The difficulty with making an assertion like 21.24 is that the large devia-
tion probability actually converges on any function which goes to asymp-
totically to zero! So, to extract the actual rate of dependence, we need to
get a result like 21.25.

More generally, one consequence of Theorem 270 is that SDE trajectories
which are far from the trajectory of the ODE have exponentially small proba-
bilities. The vast majority of the probability will be concentrated around the
unperturbed trajectory. Reasonable sample-path functionals can therefore be
well-approximated by averaging their value over some small (δ) neighborhood of
the unperturbed trajectory. This should sound very similar to Laplace’s method
for the evaluate of asymptotic integrals in Euclidean space, and in fact one of
the key parts of large deviations theory is an extension of Laplace’s method to
infinite-dimensional function spaces.

In addition to this mathematical content, there is also a close connection
to the principle of least action in physics. In classical mechanics, the system
follows the trajectory of least action, the “action” of a trajectory being the
integral of the kinetic minus potential energy along that path. In quantum
mechanics, this is no longer an axiom but a consequence of the dynamics: the
action-minimizing trajectory is the most probable one, and large deviations from
it have exponentially small probability. Similarly, the theory of large deviations
can be used to establish quite general stochastic principles of least action for
Markovian systems.3

3For a fuller discussion, see Eyink (1996),Freidlin and Wentzell (1998, ch. 3).


