
Chapter 25

Ergodicity and Metric
Transitivity

Section 25.1 explains the ideas of ergodicity (roughly, there is
only one invariant set of positive measure) and metric transivity
(roughly, the system has a positive probability of going from any-
where to anywhere), and why they are (almost) the same.

Section 25.2 gives some examples of ergodic systems.
Section 25.3 deduces some consequences of ergodicity, most im-

portantly that time averages have deterministic limits (§25.3.1), and
an asymptotic approach to independence between events at widely
separated times (§25.3.2), admittedly in a very weak sense.

25.1 Metric Transitivity

Definition 341 (Ergodic Systems, Processes, Measures and Transfor-
mations) A dynamical system Ξ,X , µ, T is ergodic, or an ergodic system or an
ergodic process when µ(C) = 0 or µ(C) = 1 for every T -invariant set C. µ is
called a T -ergodic measure, and T is called a µ-ergodic transformation, or just
an ergodic measure and ergodic transformation, respectively.

Remark: Most authorities require a µ-ergodic transformation to also be
measure-preserving for µ. But (Corollary 54) measure-preserving transforma-
tions are necessarily stationary, and we want to minimize our stationarity as-
sumptions. So what most books call “ergodic”, we have to qualify as “stationary
and ergodic”. (Conversely, when other people talk about processes being “sta-
tionary and ergodic”, they mean “stationary with only one ergodic component”;
but of that, more later.

Definition 342 (Metric Transitivity) A dynamical system is metrically tran-
sitive, metrically indecomposable, or irreducible when, for any two sets A,B ∈
X , if µ(A), µ(B) > 0, there exists an n such that µ(T−nA ∩B) > 0.
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Remark: In dynamical systems theory, metric transitivity is contrasted with
topological transitivity: T is topologically transitive on a domain D if for any
two open sets U, V ⊆ D, the images of U and V remain in D, and there is
an n such that TnU ∩ V $= ∅. (See, e.g., Devaney (1992).) The “metric”
in “metric transitivity” refers not to a distance function, but to the fact that
a measure is involved. Under certain conditions, metric transitivity in fact
implies topological transitivity: e.g., if D is a subset of a Euclidean space and
µ has a positive density with respect to Lebesgue measure. The converse is not
generally true, however: there are systems which are transitive topologically but
not metrically.

A dynamical system is chaotic if it is topologically transitive, and it contains
dense periodic orbits (Banks et al., 1992). The two facts together imply that a
trajectory can start out arbitrarily close to a periodic orbit, and so remain near
it for some time, only to eventually find itself arbitrarily close to a different
periodic orbit. This is the source of the fabled “sensitive dependence on ini-
tial conditions”, which paradoxically manifests itself in the fact that all typical
trajectories look pretty much the same, at least in the long run. Since metric
transitivity generally implies topological transitivity, there is a close connection
between ergodicity and chaos; in fact, most of the well-studied chaotic systems
are also ergodic (Eckmann and Ruelle, 1985), including the logistic map. How-
ever, it is possible to be ergodic without being chaotic: the one-dimensional
rotations with irrational shifts are, because there periodic orbits do not exist,
and a fortiori are not dense.

Lemma 343 (Metric transitivity implies ergodicity) If a dynamical sys-
tem is metrically transitive, then it is ergodic.

Proof: By contradiction. Suppose there was an invariant set A whose µ-
measure was neither 0 nor 1; then Ac is also invariant, and has strictly positive
measure. By metric transitivity, for some n, µ(T−nA∩Ac) > 0. But T−nA = A,
and µ(A ∩Ac) = 0. So metrically transitive systems are ergodic. !

There is a partial converse.

Lemma 344 (Stationary Ergodic Systems are Metrically Transitive)
If a dynamical system is ergodic and stationary, then it is metrically transitive.

Proof: Take any µ(A), µ(B) > 0. Let Aever ≡
⋃∞

n=0 T−nA — the union of
A with all its pre-images. This set contains its pre-images, T−1Aever ⊆ Aever,
since if x ∈ T−nA, T−1x ∈ T−n−1A. The sequence of pre-images is thus non-
increasing, and so tends to a limiting set,

⋂∞
n=1

⋃∞
k=n T−kA = Ai.o., the set of

points which not only visit A eventually, but visit A infinitely often. This is an
invariant set (Lemma 306), so by ergodicity it has either measure 0 or measure
1. By the Poincaré recurrence theorem (Corollaries 67 and 68), since µ(A) > 0,
µ(Ai.o.) = 1. Hence, for any B, µ(Ai.o. ∩ B) = µ(B). But this means that, for
some n, µ(T−nA ∩B) > 0, and the process is metrically transitive. !
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25.2 Examples of Ergodicity

Example 345 (IID Sequences, Strong Law of Large Numbers) Every
IID sequence is ergodic. This is because the Kolmogorov 0-1 law states that every
tail event has either probability 0 or 1, and (Exercise 25.3) every invariant event
is a tail event. The strong law of large numbers is thus a two-line corollary of
the Birkhoff ergodic theorem.

Example 346 (Markov Chains) In the elementary theory of Markov chains,
an ergodic chain is one which is irreducible, aperiodic and positive recurrent.
To see that such a chain corresponds to an ergodic process in the present sense,
look at the shift operator on the sequence space. For consistency of notation, let
S1, S2, . . . be the values of the Markov chain in Σ, and X be the semi-infinite
sequence in sequence space Ξ, with shift operator T , and distribution µ over
sequences. µ is the product of an initial distribution ν ∼ S1 and the Markov-
family kernel. Now, “irreducible” means that one goes from every state to every
other state with positive probability at some lag, i.e., for every s1, s2 ∈ Σ, there
is an n such that P (Sn = s2|S1 = s1) > 0. But, writing [s] for the cylinder set in
Ξ with base s, this means that, for every [s1], [s2], µ(T−n[s2]∩[s1]) > 0, provided
µ([s1]) > 0. The Markov property of the S chain, along with positive recurrence,
can be used to extend this to all finite-dimensional cylinder sets (Exercise 25.4),
and so, by a generating-class argument, to all measurable sets.

Example 347 (Deterministic Ergodicity: The Logistic Map) We have
seen that the logistic map, Tx = 4x(1−x), has an invariant density (with respect
to Lebesgue measure). It has an infinite collection of invariant sets, but the only
invariant interval is the whole state space [0, 1] — any smaller interval is not
invariant. From this, it is easy to show that all the invariant sets either have
measure 0 or measure 1 — they differ from ∅ or from [0, 1] by only a countable
collection of points. Hence, the invariant measure is ergodic. Notice, too, that
the Lebesgue measure on [0, 1] is ergodic, but not invariant.

Example 348 (Invertible Ergodicity: Rotations) Let Ξ = [0, 1), Tx =
x + φ mod 1, and let µ be the Lebesgue measure on Ξ. (This corresponds to
a rotation, where the angle advances by 2πφ radians per unit time.) Clearly,
T preserve µ. If φ is rational, then, for any x, the sequence of iterates will
visit only finitely many points, and the process is not ergodic, because one can
construct invariant sets whose measure is neither 0 nor 1. (You may construct
such a set by taking any one of the periodic orbits, and surrounding its points
by internals of sufficiently small, yet positive, width.) If, on the other hand, φ
is irrational, then Tnx never repeats, and it is easy to show that the process is
ergodic, because it is metrically transitive. Nonetheless, T is invertible.

This example (suitably generalized to multiple coordinates) is very important
in physics, because many mechanical systems can be represented in terms of
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“action-angle” variables, the speed of rotation of the angular variables being set
by the actions, which are conserved, energy-like quantities. See Mackey (1992);
Arnol’d and Avez (1968) for the ergodicity of rotations and its limitations, and
Arnol’d (1978) for action-angle variables. Astonishingly, the result for the one-
dimensional case was proved by Nicholas Oresme in the 14th century (von Plato,
1994).

Example 349 (Ergodicity when the Distribution Does Not Converge)
Ergodicity does not ensure a uni-directional evolution of the distribution. (Some
people (Mackey, 1992) believe this has great bearing on the foundations of ther-
modynamics.) For a particularly extreme example, which also illustrates why
elementary Markov chain theory insists on aperiodicity, consider the period-two
deterministic chain, where state A goes to state B with probability 1, and vice
versa. Every sample path spends just much time in state A as in state B, so
every time average will converge on Em [f ], where m puts equal probability on
both states. It doesn’t matter what initial distribution we use, because they are
all ergodic (the only invariant sets are the whole space and the empty set, and
every distribution gives them probability 1 and 0, respectively). The uniform
distribution is the unique stationary distribution, but other distributions do not
approch it, since U2nν = ν for every integer n. So, Atf → Em [f ] a.s., but
L (Xn) $→ m. We will see later that aperiodicity of Markov chains connects to
“mixing” properties, which do guarantee stronger forms of distributional con-
vergence.

25.3 Consequences of Ergodicity

The most basic consequence of ergodicity is that all invariant functions are
constant almost everywhere; this in fact characterizes ergodicity. This in turn
implies that time-averages converge to deterministic, rather than random, limits.
Another important consequence is that events widely separated in time become
nearly independent, in a somewhat funny-looking sense.

Theorem 350 (Ergodicity and the Triviality of Invariant Functions)
A T transformation is µ-ergodic if and only if all T -invariant observables are
constant µ-almost-everywhere.

Proof: “Only if”: Because invariant observables are I-measurable (Lemma
304), the pre-image under an invariant observable f of any Borel set B is an
invariant set. Since every invariant set has µ-probability 0 or 1, the probability
that f(x) ∈ B is either 0 or 1, hence f is constant with probability 1. “If”: The
indicator function of an invariant set is an invariant function. If all invariant
functions are constant µ-a.s., then for any A ∈ I, either 1A(x) = 0 or 1A(x) = 1
for µ-almost all x, which is the same as saying that either µ(A) = 0 or µ(A) = 1,
as required. !
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25.3.1 Deterministic Limits for Time Averages

Theorem 351 (The Ergodic Theorem for Ergodic Processes) Suppose
µ is AMS, with stationary mean m, and T -ergodic. Then, almost surely,

lim
t→∞

Atf(x) = Em [f ] (25.1)

for µ- and m- almost all x, for any L1(m) observable f .

Proof: Because every invariant set has µ-probability 0 or 1, it likewise has
m-probability 0 or 1 (Lemma 329). Hence, Em [f ] is a version of Em [f |I]. Since
Atf is also a version of Em [f |I] (Corollary 340), they are equal almost surely.
!

An important consequence is the following. Suppose St is a strictly sta-
tionary random sequence. Let Φt(S) = f(St+τ1 , St+τ2 , . . . St+τn) for some fixed
collection of shifts τn. Then Φt is another strictly stationary random sequence.
Every strictly stationary random sequence can be represented by a measure-
preserving transformation (Theorem 52), where X is the sequence S1, S2, . . ., the
mapping T is just the shift, and the measure µ is the infinite-dimensional mea-
sure of the original stochastic process. Thus Φt = φ(Xt), for some measurable
function φ. If the measure is ergodic, and E [Φ] is finite, then the time-average
of Φ converges almost surely to its expectation. In particular, let Φt = StSt+τ .
Then, assuming the mixed moments are finite, t−1

∑∞
t=1 StSt+τ → E [StSt+τ ]

almost surely, and so the sample covariance converges on the true covariance.
More generally, for a stationary ergodic process, if the n-point correlation func-
tions exist, the sample correlation functions converge a.s. on the true correlation
functions.

25.3.2 Ergodicity and the approach to independence

Lemma 352 (Ergodicity Implies Approach to Independence) If µ is
T -ergodic, and µ is AMS with stationary mean m, then

lim
t→∞

1
t

t−1∑

n=0

µ(B ∩ T−nC) = µ(B)m(C) (25.2)

for any measurable events B,C.

Proof: Exercise 25.1. !
Theorem 353 (Approach to Independence Implies Ergodicity) Suppose
X is generated by a field F . Then an AMS measure µ, with stationary mean
m, is ergodic if and only if, for all F ∈ F ,

lim
t→∞

1
t

t−1∑

n=0

µ(F ∩ T−nF ) = µ(F )m(F ) (25.3)

i.e., iff Eq. 25.2 holds, taking B = C = F ∈ F .

Proof: “Only if”: Lemma 352. “If”: Exercise 25.2. !
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25.4 Exercises

Exercise 25.1 (Ergodicity implies an approach to independence) Prove
Lemma 352.

Exercise 25.2 (Approach to independence implies ergodicity) Prove
the “if” part of Theorem 353.

Exercise 25.3 (Invariant events and tail events) Prove that every invari-
ant event is a tail event. Does the converse hold?

Exercise 25.4 (Ergodicity of ergodic Markov chains) Complete the argu-
ment in Example 346, proving that ergodic Markov chains are ergodic processes
(in the sense of Definition 341).


