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My real interest: how much of the mechanism of a complex
system can we reconstruct from observations?

As Yet Another Ex-Physicist, social networks are just large
coupled dynamical assemblage. . .
Got interested in this problem with Sperber (1996) and
especially Christakis and Fowler (2007)
. . . and expected to reach much more positive conclusions
Apologies in advance for social-scientific naivete
Joint work with Andrew Thomas
Details: http://arxiv.org/abs/1004.4704
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“If your friend Joey jumped off a bridge, would you
jump too?”

1 yes: Joey inspires you (social contagion or influence)
2 yes: Joey infects you with a parasite which suppresses

fear of falling (biological contagion)
3 yes: you’re friends because you both like to jump off

bridges (manifest homophily)
4 yes: you’re friends because you both like roller-coasters,

and have a common risk-seeking propensity (latent
homophily)

5 yes: because sometimes jumping off a bridge is the only
sane thing to do (external causation)
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Wikipedia, s.v. “Tacoma Narrows Bridge (1940)”
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Are these distinctions with observational differences?

1 Can’t experiment by pushing Joey off the bridge
2 Can’t experiment by keeping Joey and Irene apart, or

pushing them together
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Contagion Not Identifiabile
Asymmetry No Solution

Contagion, Influence

Whether Irene does something is predicted by whether Irene’s
neighbors had already done it

Diffusion of innovations
Diffusion of ideologies
Infectious diseases
Not-obviously-infectious conditions (e.g., obesity,
loneliness, divorce) . . .
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Why Care?

Social engineering by targeting influential people
Public health, marketing, crime, propaganda, etc.

Lots of interest for electronic social networks

Can we actually figure out how influence/contagion there is?
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Causal Inference

This is a causal inference question

“Correlation doesn’t imply causation, but it does waggle its eyebrows suggestively and

gesture furtively while mouthing ‘look over there”’
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Looking Over There

Causal inference becomes a lot clearer once you start drawing
pictures

(Pearl, 2009; Morgan and Winship, 2007)
Dots = variables, arrows = direct causal influence
Do controls block off indirect paths between variables?
Do controls activate indirect paths?
Separate question: what causal diagrams are compatible with the correlation pattern?

(Spirtes et al., 2001)
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Irene's
 homophilous

 traits

Is Joey
 Irene's friend?

Irene's
 behavior
 yesterday

Irene's
 behavior

 today

Joey's
 homophilous

 traits

Joey's
 behavior
 yesterday

Joey's
 behavior

 today

???
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Contagion Effects are Unidentifiable

1 Joey’s behavior yesterday has information about Joey’s
traits

2 Joey’s traits have information about Irene’s, since they are
neighbors

3 Irene’s traits have information about Irene’s behavior today
4 ∴ Joey’s behavior yesterday predicts Irene’s behavior

today even if there is no direct causal effect
5 ∴ Homophily is confounded with contagion
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Failed Escape Attempts

Adding covariates for Irene and Joey doesn’t help

Adding more time points doesn’t help
Letting social ties change over time really doesn’t help
(Noel and Nyhan, 2010)
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Possible Escapes

Really strong modeling assumptions might work (linearity doesn’t

seem strong enough)

Observe and control for all the traits which affect friendship
Observe and control for all the traits which affect behavior
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The Argument from Asymmetry

Focus on unreciprocated friendships

IRENE: Joey is my friend
JOEY: Irene who?

Suppose senders (Irene) are more predictable from receivers
(Joey) than vice versa
Doesn’t this argue for direct influence?
Sounds plausible. . .
. . . fails if senders and receivers have systematically different
trait values
e.g., people similar friends but also like median friends
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Status and Choices
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Making homophily and contagion look like causation

Long-term, hard-to-change social/economic status explains
more short-term, malleable cultural / political / consumer
variables

Gellner: “Social structure is who you can marry,
culture is what you wear at the wedding.”
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What’s the evidence?

The stories sound good
Casual empiricism
Correlation/regression analyses; cultural choices are
predictable from social statuses (e.g. Bourdieu (1984))
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From Bourdieu (1984)
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Probably true a lot of the time

BUT usually ignores social networks and just looks at surveys
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Irene's
 status

Is Joey
 Irene's friend?

Irene's choice
 yesterday

Irene's choice
 today

Joey's
 status

Joey's choice
 yesterday

Joey's choice
 today
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More Confounding

Direct influence of Irene’s status on Irene’s choices is
confounded with contagion:

1 Irene’s status predicts who Irene’s friends are
2 ∴ Irene’s status predicts what Irene’s friends chose

yesterday
3 contagion: Joey’s choice yesterday influences Irene’s

choice today if they are friends
4 ∴ Irene’s status predicts Irene’s choice, even if there is no

direct influence
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Responsible Just-So Story-telling

These accounts are usually adaptationist/functionalist
At the very least they are causal accounts
We should really check them
Biology suggests: a neutral model

Include all the evolutionary processes except adaptation
Work out expected behavior of this model
Data departing from neutral model⇒ evidence of
adapation
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Caricature Neutral Model of Cultural Evolution

Unchanging status for each node

Network is assortative on status (minimal departure from

Erdős-Rényi)

Binary choice for each node at each time
Start by tossing coins

1 At each time, pick a random node and a random neighbor
2 Copy the neighbor’s choice
3 Go to (1)

(= “voter model” of statistical mechanics)
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Contagion + Homophily Looks Like Causation

Neutral diffusion + homophily looks like a real connection
between social status and cultural choices

Problem is not the ecological fallacy (red-state/blue-state fallacy)

Choices are still dependent after controlling for status
Need to control for neighbors’ previous choices
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Bounds
Clustering

What To Do?

How can we go forward with studying contagion when there is
homophily?

Experiment: on choice/behavior or social ties or both

this is Science, and is Hard
No problem if we control for the homophilous traits
∴ figure out what they are and measure them
this is Science, and is Hard
Bounds: even if we can’t point-identify, maybe we can pin
down a range
Clustering: figure out the traits from the social network
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Bounds and Partial Identification

Unidentifiable parameter ≡ multiple values of the parameter
yield the same observational distribution

∴ even infinite data does not pin down the parameter
Partial identification (Manski, 2007): range of parameter values
yielding one distribution might be limited
∴ infinite data bounds the parameter
Could we bound contagion effects when there is homophily?
Work in progress, only negative results so far. . .
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Could we bound contagion effects when there is homophily?
Work in progress, only negative results so far. . .
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Partial Control by Clustering?

Could we work out the trait from the network?

Homophily⇒ you tend to resemble your neighbors
⇒ Especially likely if you all have lots of neighbors in common
who all have lots of neighbors in common, etc.
⇒ Modules/communities
Use community membership as a proxy for the traits
Can’t remove confounding
unless estimated community assignments are a sufficient statistic for the traits

but should reduce it, tighten bounds
. . . or make it worse if the relationship isn’t simple homophily
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Conclusion

1 Homophily + causal influence looks like contagion
2 Homophily + contagion looks like causal influence
3 Need scientific knowledge and/or blind faith in assumptions

Technical trickery won’t do (alas)
4 May be possible to limit confounding
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Toy Example

Try to predict Y (i , t) from Y (j , t) and vice versa when
Aij = 1, Aji = 0
X (i) ∼ U(0, 1)
Edges form with probability ∝ logit−1(−3|X (i)− X (j)|)
i nominates j from among neighbors, ∝ logit−1(−|X (j)− 0.5|)

Y (i , 0) = (X (i)− 0.5)3 +N (0, (0.02)2)

Y (i , 1) = Y (i , 0) + 0.3Xi +N (0, (0.02)2)
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X(i)

A(i,j)Y(i,t-1)

Y(i,t)

X(j)

Y(j,t-1)

Y(j,t)

Causal graph of the model with no contagion, but asymmetry in regression coefficients
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Effect of Phantom ‘Influencer' on ‘Influenced' in Time Series

Regression Coefficient
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Results:
Y (i , 1) is well-predicted from Y (j , 0)

Nominees are disproportionately in the middle; i → j , j 6→ i
suggests i is more peripheral
For asymmetric pairs, regression of sender on receiver
differs from that of receiver on sender
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An Analogy For Community Control

Gene association studies: does having this genetic variant
influence this trait/change this risk?
Real populations are structured
Sub-populations differ (due to reproductive isolation etc.)
⇒ genes are correlated
⇒ random biases and inflated vvariances (vs. usual formulas)
⇒ many bogus results
Population structure substantial even for e.g. Germany (Steffens et al., 2006) or Italy,

never mind “white Americans”

Responses: (1) pedigrees; (2) “genomic control” by estimating
over-dispersion empirically (Devlin et al., 2001); (3) clustering
— the diffusion maps in Lee et al. (2009) look a lot like
Newman (2006)
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