
Neural Networks

36-462/662, Spring 2022

5 April 2022 (Lecture 21)

Contents
From Logistic Regression to Multi-Layer Neural Networks 1

Gradient Descent and Backpropagation 3
Output-layer derivatives . 3
Hidden-layer derivatives . 3
The backpropagation trick . 4

How many layers? How many neurons per layer? 5
Two-layer neural networks, a.k.a. “perceptrons” . 5
Three-layer neural networks, a.k.a. multi-layer perceptrons . 6
Deep neural networks and deep learning . 8
Choice of number of layers and number of units per layer . 8
Beyond feed-forward networks . 8

Some history and some puzzles 8

Three Interesting Aspects of Deep Learning 10
Adversarial Examples . 10
Interpolation, and Generalizing Despite Memorizing . 18
Alien Cheaters, or, What the Frog’s Eye Tells the Frog’s Brain, or, What Is It Like to Be a

Convolutional Neural Network? . 19

Further reading 27

Exercises 28

References 29

From Logistic Regression to Multi-Layer Neural Networks

Let’s look again at the probability which is output by logistic regression (rather than the class label). It’s

P
(
Y = 1| ~X = ~x

)
= eb+~x·~w

1 + eb+~x·~w
(1)

This takes an input vector ~x = (x1, x2, . . . xp) and calculates a weighted sum of its components, ~x · ~w =∑p
j=1 xjwj . It then adds on a constant. This can give us a number, call it η, anywhere between −∞ and

+∞. We then calculate eη/(1 + eη). This squashes the number back into the range [0, 1]. To speak like
an engineer, the output p is very nearly linear in η when η ≈ 0, but when η is very large (→ ∞) or very
small (→ −∞), the output saturates. This kind of behavior is typical of lots of nonlinear devices, and in

1

particular it serves as a crude caricature of how nerve cells or neurons behave. This led to the idea that if
we can compute simple things, like classification, with one device of this sort, maybe we can compute more
complicated functions with many of them wired together.

Formally, a feed-forward artificial neural network is defined by having layers of such devices, where
the output of one layer provides the input to the next. The convention is to count the input variables as the
first layer, so logistic regression is an example of a two-layer neural network. If we add an intermediate or
hidden layer with m nodes between the inputs and the outputs, one has a model like so:

tk = fh(α(1)
k +

p∑
l=1

xlw
(1)
lk) (2)

= fh(ηk(~x)) (3)

sj = fo(α(2)
j +

r∑
k=1

tkw
(2)
kj) (4)

= fo(ξj(~x)) (5)

Here we have an input vector ~x, of dimension p, and an output vector ~s, of dimension q. tk is the output
of the kth hidden node (there are m of them). fh is the activation, response or squashing function of
the hidden nodes, and fo is the activation function of the output nodes. The weights w(1)

lk and w(2)
kj control

how strongly the output of k is influenced by j. Similarly the biases α(1) and α(2) set base-line levels of
activation for each node1. I will write the over-all output of the neural network on inputs ~x as φ(~x;α,w).
It is, I hope, clear how we could extend this notation to multiple intermediate or hidden layers, which will
become important later.

Using a three-layer neural network thus deciding on the number m of hidden units, what the activation
functions should be, and on what the weights should be.

Take m as given for now; we’ll come back to that.

The activation functions are almost always chosen to be monotonic, and if we want to be able to estimate
efficiently they should also be smooth. (We’ll come back to why in a little bit.) Otherwise, appropriate
choices depends on what we want to do. Common activation functions are linear (the identity function),

f(η) = η , (6)

“rectified linear” (a.k.a. “ReLU” for “rectified linear unit”),

f(η) = η1 {η > 0} (7)

logistic
f(η) = eη/(1 + eη , (8)

and the hyperbolic tangent
f(η) = tanh η = eη − e−η

eη + e−η
(9)

Most often, fh is the hyperbolic tangent, and fo is linear for regression problems, or logistic for classification
problems2.

So: fix the number of neurons, fix the activation functions, and “all” that’s left to find are the weights. This
is called training.

1It’s common to introduce an extra input variable, call it x0 or t0, which is always equal to 1. Then we can replace the
off-sets α(1)

k
and α(2)

j with weights w(1)
0l

and w(2)
0j . Also, some people like to allow layer-skipping connections, directly from

inputs to outputs; this raises no point of principle but complicates the notation a bit. Finally, some people like to number the
units consecutively across all the layers, so that one just needs a single weight matrix w, rather than two. Again, this doesn’t
raise any point of principle.

2Another way to approach classification is to have one output node for each class, with a linear activity function, and then
take the probability of class j to be esj /

∑q

j=1 e
sj ; this ensures that probabilities sum to 1.

2

Gradient Descent and Backpropagation

People usually train neural networks by gradient descent. Remember that we have training data
(~x1, y1), . . . (~xn, yn), and a loss function `. If we set all the weights and biases, the empirical risk will be

R̂(α,w) = 1
n

n∑
i=1

`(yi, φ(~xi;α,w)) (10)

(The empirical risk is implicitly a function of the training data, but I am suppressing that in the notation for
now.)

If we want to optimize this, we’re going to need to take derivatives with respect to the parameters.

Output-layer derivatives

Taking the derivative with respect to parameters for the output layer is straightforward, if long-winded, using
the chain rule:

∂R̂

∂w
(2)
jk

= 1
n

n∑
i=1

∂`(yi, a)
∂aj

∣∣∣∣
a=φ(~xi;α,w)

dfo
du

∣∣∣∣
u=ξj(~xi)

tk(~xi) (11)

This is a mouthful, so let’s think it through for a simple case, specifically regression with a squared-error
loss function. Because we’re predicting a single real number, we have one output node, hence q = 1. The
derivative ∂`(yi,a)

∂a = 2(yi − a), a.k.a. (twice) the residual. So in the regression case, we’d get

∂R̂

∂w
(2)
j1

= 1
n

n∑
i=1

residuali
dfo
du

∣∣∣∣
u=ξ(~xi)

tj(~xi) (12)

The first factor in the sum is “how does the loss change (on this data point) if the output is increased
slightly?” The second factor in the sum is “how much does the output change if the total input to that node
is increased slightly?”3 The third factor is “how much does the total input to the node change if the weight
we’re interested in is increased slightly?”

If we are using a different loss function, all that changes is that the first factor is no longer (twice) the
residual, but some other slope saying “how much would the loss on this data point increase if the output of
this final-layer neuron increased a little?” You can, if you like, think of such a slope as a sort of generalized
residual. If we’ve got multiple output-layer neurons, we need to take the derivatives for each of them, but
that’s a calculation we can do “in parallel” for all of them.

(I will leave it as a character-building exercise to take the derivatives with respect to the biases α(2)
k .)

Hidden-layer derivatives

Now suppose we want to take the derivative with respect to one of the weights going into the hidden layer,
w

(1)
lk . We use the chain rule again, and we recognize that changing w(1)

lk is only going to change the loss if
doing so changes the activation of an output node, which is only going to happen if doing so changes the

3Also, notice that this is the only place where the shape of the activation function appears explicitly. If the activation function
was linear, this derivative would always be 1. If the activation function is “rectified linear”, the derivative is always 0 (below
the threshold) or 1 (above it); this simplicity is one of the reasons ReLU neural networks are popular. If we use a logistic or
hyperbolic-tangent activation function we need to do more calculation, but the derivative of tanhu is (exercise!)

(
2

eu+e−u

)2

which is easy enough. Further exercise: find the derivative of the logistic activation function.

3

total input to an output node. So we get, from the chain rule,

∂R̂

∂w
(1)
lk

(13)

= 1
n

n∑
i=1

q∑
j=1

∂`(yi, a)
∂aj

∣∣∣∣
a=φ(~xi;α,w)

dfo
du

∣∣∣∣
u=ξj(~xi)

w
(2)
jk

dfh
dv

∣∣∣∣
v=ηk(~xi)

xil

Again, this is a mouthful, but again, we can make some sense of it by taking it piece by piece.

The first factor in each term being averaged is the generalized residual for that data point. The second factor
is how much the output of each final-layer unit changes as we change its total input. The third factor is how
much the total input to final-layer unit j changes in response to a small change in the output of hidden-layer
unit k. We need to sum these three factors, multiplied togehter, over all final-layer units, because we’re
contemplating a change to how the hidden-layer unit k works, which could affect any or all of the final-layer
units. (If we’re doing regression or binary classification we only have one final-layer unit, so that sum over
j would go away.) We then weight this by how much the output of unit k changes in response to a small
change in its total input, and then by how much a small change in the weight unit k gives to feature l will
change the total input.

You can imagine extending this if there were multiple hidden or intermediate layers. Doing so will illuminate
why people who are into neural networks are also into automatic differentiation.

The backpropagation trick

Something to notice about what we’ve just done is that a lot of the work for the hidden-layer units is also
needed for the final-layer units.

Let’s say that for each final-layer unit j, we calculate

bij = ∂`(yi, a)
∂aj

∣∣∣∣
a=φ(~xi;α,w)

dfo
du

∣∣∣∣
u=ξj(~xi)

(14)

which is the generalized residual for that unit, times the slope of the unit’s activation function: “how much
would increasing the output of j change the loss, times how rapidly does the output change when we change
the total input?”

Similarly, for each hidden-layer unit k, we calculate

bik =
q∑
j=1

bijwjk
dfh
dv

∣∣∣∣
v=ξk(~xi)

(15)

That is, we sum the bij weighted by wjk, and we multiply everything by the derivative of k’s output with
respect to its total input.

Now
∂R̂

∂w
(2)
jk

= 1
n

n∑
i=1

bijtj(~xi) (16)

but
∂R̂

∂w
(1)
lj

= 1
n

n∑
i=1

bikxil (17)

We can extend this to even more layers, if we need to, by defining bil similarly: the sum of the bik over the
neurons in the next layer, times he weights, times the slope of the activation function.

4

This idea was introduced by Rumelhart, Hinton, and Williams (1986), under the name of back-propagating
error or back-propagation, and what I have called the bij , bik, bil are the back-propagation signals.
These provide an extremely handy way of calculating the derivatives we need for optimizing the weights4.

Gradient descent and stochastic gradient descent

Here’s a classic way of doing gradient descent for neural networks:

• Start with some initial weights (and biases) for all the units.
• Set t = 1
• Until the weights stabilize, or t = tmax:

– Cycle through the data points from 1 to n
∗ For each data point i, compute the back-propagation signals bij and then bik using the current
weights

∗ Adjust the weights: wjk → wjk − γtbijtj(~xi), wlk → wlk − γtbikxil, where the gains γt
gradually decrease towards zero

∗ t→ t+1

You can, of course, imagine all kinds of variations here. For instance, maybe we can save a lot of time by
calculating the back-propagation signals once on each pass through the data, rather than adjusting after each
data point; maybe we change the order in which we visit data points on each pass.

One particularly important variation is that we might not visit_every_ data point on each cycle. In particular,
we might randomly sample a smaller number of data points r, perhaps even just r = 1. As we saw when we
looked at such stochastic gradient descent in general, in expectation this gives the correct derivatives, and
that’s still true when we use back-propagation to calculate the derivatives. This can be extremely useful when
the data size is very large.

This combination of back-propagation to efficiently calculate derivatives, and gradient descent or stochastic
gradient descent, is not the only possible way to train neural networks, but it’s overwhelmingly the most
popular.

How many layers? How many neurons per layer?

Two-layer neural networks, a.k.a. “perceptrons”

Two-layer neural networks, also called “perceptrons” after Rosenblatt (1958), are pretty straightforward:

sj = fo(αj +
p∑
l=1

xlwjl) (18)

We take a linear combination of the input features and apply a single nonlinearity to them (e.g., a logistic
transformation). These are what econometricians would call single-index models. (What’s that single
index?) Because fo is monotonic, all the classifications we can realize by thresholding the output are ones we
could achieve without the transformation, by applying a different threshold to the linear form αj +

∑p
l=1 xlwjl.

So: two-layer neural networks are just a slight variant on linear models. In particular, as classifiers they
really are just linear classifiers.

4While Rumelhart, Hinton, and Williams (1986) made the technique a permanent part of the neural-network literature, and
introduced the handy name “back-propagation”, there is a complicated history of independent re-inventions, of greater or lesser
generality, going back to the 1960s at least. (Since it’s just an application of the chain rule, in principle it could have been
discovered at any time since the early 18th century.) The reference works given under “Further Reading” below discuss some of
this history.

5

Three-layer neural networks, a.k.a. multi-layer perceptrons

Three-layer neural networks are vastly more powerful than two-layer neural networks. In particular, with the
right choice of smooth, nonlinear activation functions (logits and hyperbolic tangent very much included), we
have (roughly) the following result:

Let g : Rp 7→ Rq be any smooth function, and pick any limited domain D ∈ Rp. Then, by taking
m large enough, we can always find a three-layer network with m nodes and weights w so that
max~x∈D ‖g(~x)− φ(~x; w)‖ ≤ ε.

That is, by throwing enough hidden units at the problem, we can approximate an arbitrary (smooth) function
arbitrarily closely. We say that three-layer neural networks are universal approximators.

Now, many other combinations of basic functions can also be universal approximators, in this sense. The most
obvious are polynomials (a result known as Weierstrass’s theorem), but one can also use combinations of
sines and cosines, and many other function families; the general result in mathematical analysis which covers
this is what’s called the **Stone-Weierstrass* theorem. (Indeed, most proofs of the result I just gave use the
Stone-Weierstrass theorem.) But it’s still remarkable that adding just one layer increases the power of the
models so remarkably, from “basically linear” to “basically anything”.

Deriving new features, and cautions about interpretation

The final layer of the neural network is doing a (basically) linear operation on the output of the hidden layer.
(Or, with even more layers, on the output of the next-to-final layer.) So it is very tempting to think that
what’s happening is that the hidden layer is computing new features from the input variables, and then the
final layer is applying a linear method to those new features. Thus training the neural network is in some
sense discovering new features, or learning a new representation of the data.

This is, I think, basically right, but it requires the caution that it’s very hard to interpret those new features.

Specifically, one is tempted to try to give some human, understandable story about what each hidden-layer
unit is interpreting. One common procedure for coming up with such a story about hidden-layer unit k is to
take the trained network, and then look at the input vectors ~xi which maximize tk. Then one tries to figure
out what those input vectors have in common, and so what unit k is representing.

The difficulty here is that unit k doesn’t really do anything on its own, but only in concert with all the other
hidden-layer units. The hidden layer as a whole provides a representation of the data, but it’s generally
a distributed representation, not (necessarily) localized to particular units. Neuroscientists studying
biological networks long ago coined the term “grandmother cell fallacy” to describe the difficulty: The fact
that you can recognize your grandmother’s face (and distinguish it from other people’s faces, from her hands,
from non-faces, etc.) means that the biological neural network in your brain must, somehow, represent your
grandmother’s face. It does not follow that there is one particular neuron which is activated when you see
her face!

So, as a point of theory, we shouldn’t expect individual hidden-layer units to represent humanly-meaningful
features, even if the hidden layer acts as a distributed representation. Concretely, Szegedy et al. (2013) did
the experiment of creating random weights Zk and looking at the inputs which maximizes

∑m
k=1 Zktk(~x) in

trained neural networks that worked well at image classification5. The images that maximized the output of
random combinations of hidden-layer units were just as coherent, and just as easy to tell stories about and
interpret, as those which maximized the activation of individual hidden-layer units6. Again, this is compatible
with the hidden layer as a whole being a distributed representation of the data, in terms of new features.

5Actually, the networks they looked at were “deep” networks with many more than three layers, but the idea is the same.
6Zhu, Rogers, and Gibson (2009), in a series of experiments which deserve to be much better known than they are, showed

that humans — or at least undergrads at UW-Madison — have a pretty impressive ability to come up with stories that let them
interpret, and memorize, quite long collections of literally-random dictionary words. It would be very interesting to know how
big a collection of random images from the data sets used to train these neural networks could be “interpreted”, and memorized,
by graduate students and professors of machine learning.

6

Auto-encoders, dimension reduction, embeddings

The universal approximations result say that with large enough hidden layers, we can come arbitrarily close to
any function we like. This often leads to situations where m > p, so we expand out into a higher-dimensional
space. (This should remind you of the kernel trick.) There are particularly interesting situations, however,
where m < p, so we try to encode or compress the relevant aspects of the input into a smaller number of
dimensions. This doesn’t always work — there isn’t a guarantee that a good compression exists — but when
we can pull it off we’ve done dimension reduction.

An extremely interesting example of the bottleneck situation is when the output dimension and the input
dimensions are equal, q = p, and we use a loss function which simply rewards reproducing the input, but the
hidden layer has fewer units, m < p. A network which can do this is called an auto-encoder. This will be
possible when the original high-dimensional input is actually highly redundant, and, to a good approximation,
has a much smaller number of dimensions, and we can find a way of recovering the input from that compressed
representation. This should remind you of PCA; you can think of auto-encoders as being like a nonlinear sort
of PCA, or PCA as being a linear auto-encoder.

When we can make m� p and still get good results, we sometimes refer to the hidden layer as a bottleneck
which the information needs to pass through. Exactly what the connections are here to the “information
bottleneck method” introduced by Tishby, Pereira, and Bialek (1999) is an active subject of investigation,
but many researchers strongly suspect that this is a big part of what’s going on in neural networks.

If we have an input x which the low-dimensional hidden layer transforms into a point ~t(x) ≡
(t1(x), t2(x), . . . tm(x)) ∈ Rm, we sometimes refer to ~t(x) as an embedding of x into the vector space Rm.
Once we’ve represented the input, whatever it might be, as a point in a vector space, we can do all kinds of
things to it, like do similarity search, or analogy-completion tasks (cf. Kearns and Roth (2019), pp. 57–63).
Again, you can think of this as one way of generalizing what we did with PCA.

An outstanding example of successfully-applied neural network embeddings is provided by word embeddings,
beginning with Mikolov et al. (2013). The basic idea here is to try to predict the occurrence of a word in text
as a function of the other words around it, with each word being represented by a not-too-high-dimensional
vector. The original paper on this word2vec technique was sufficiently opaque to lead to a series of follow-up
papers explaining what, exactly, was going on (like Goldberg and Levy (2014)), but it also worked really well
on lots of natural-language-processing tasks. In particular, it worked much better than previous methods of
embedding words in vector spaces based on PCA (Baroni, Dinu, and Kruszewski 2014). Since Mikolov et al.
(2013) appeared, neural word embedding models have gotten much more elaborate, and there has been a
flurry of effort to devise similar sorts of embedding methods for other kinds of data, e.g., nodes in graphs.

Random features

Remember that when we looked at random features, we looked at models of the form

s(~x) =
m∑
k=1

wkf(~x;ωk) (19)

where f was a fixed nonlinear function, and the parameters ωk were drawn randomly from some distribution
ρ, leaving only the weights wk to be adjusted to minimize the risk. In particular, we got a lot of good
results with random Fourier features, so f(~x;ω) = cos (~x · ν + δ), breaking the (p+ 1)-dimensional ω into a
p-dimensional “wave vector” ν and a scalar “phase” δ. However, there was nothing magical (as opposed to
convenient) to using random Fourier features, as opposed to, say, random hyperbolic tangent features.

We introduced random feature models as a way of efficiently approximating kernel machines when the number
of training data points grew large — instead of dealing with an n× n kernel matrix, we could deal with just
an m×m covariance matrix of the random features, and get nearly the same results. We can see now that
another way of understanding random feature models is as three-layer neural networks, where the weights
connecting the input features to the hidden layer are randomly generated independently of the data, and

7

https://www.stat.cmu.edu/~cshalizi/dm/22/lectures/15/lecture-15.pdf

then fixed during training. Instead, only the weights connecting the hidden layer to the output layer are
optimized, eliminating the need for back-propagation.

Deep neural networks and deep learning

A “deep” neural network, as opposed to a shallow one, is simply one with more than three layers — the
more layers it has, the deeper it is. “Deep learning” is simply fitting a deep neural network, which is,
overwhelmingly, done by the combination of back-propagation and stochastic gradient descent sketched above.
(See more below.)

Over the last ten years or so, deep neural networks have proved extremely effective at a lot of tasks relating to
image classification, speech recognition, and natural language processing. This is actually puzzling, because
nobody has managed to get equivalent performance out of shallow-but-wide three-layer networks, even though
we know, mathematically, that deep networks have no more expressive power than shallow ones. (Once you’re
already a universal approximator, there’s not really much room to expand your scope.) This poses a lot of
puzzles for statistical learning.

Not just back-prop and SGD. . .

I said a moment ago that deep neural network training is mostly just back-propagation and stochastic gradient
descent. The “mostly” conceals a lot of bells and whistles which have been added to that basic contraption,
either to speed up training or to improve the performance of the learned machine. We could easily spend the
better part of a course going over all these modifications. It is not at all clear which of these tweaks actually
improve training, how much they improve training, or why they improve training. While there are people
actively working on all of those problems, I think it’s fair to say that they have not achieved the level of
clarity and consensus that it’d be worth discussing the details here. But if you are going to work with these
models on an industrial scale, then I am afraid you are going to have to plunge into those details — but they
also change very rapidly, so, again, I am not going to go over ideas which will soon be obsolete.

Choice of number of layers and number of units per layer

These are different model classes; use cross-validation.

(Or any other good way of estimating generalization error.)

Beyond feed-forward networks

The fact that I called the models I’ve described “feed-forward” should suggest that there is a “feed-back”
alternative. There are many. The most common are recurrent neural networks, where the inputs to units in
early layers include the outputs of units in later layers. Feed-forward networks are just ways of specifying
functions, mappings from Rp to Rq. Recurrent networks aren’t functions, or, if you like, aren’t always the
same function, because the history of previous inputs matters. They describe dynamical systems or automata7,
rather than just functions. Training them is harder; I defer to references under “Further Reading”.

Some history and some puzzles

Artificial neural network models, almost as we know them, originated with McCulloch and Pitts (1943) —
that is, with biologists and psychologists using a deliberately-simplified model of how biological neurons

7Specifically, what automata-theorists call transducers, which map sequences of inputs to sequences of outputs.

8

interact with each other to show that processes in the brain could implement abstract logic8.

The next turn towards what we call neural networks came with Rosenblatt (1958), whose perceptrons were,
in our terms, two-layer neural networks used as linear classifiers for various pattern-recognition problems9.
This was greeted by the press with stories about the arrival of “thinking machines”, worries about what
people would do when jobs were automated away, domination by artificial intelligence, etc.

There was also serious scientific research into the possibilities and limitations of these models. In particular,
Minsky and Papert (1969), recognizing that perceptrons could only do linear classification, established
conclusive that there were lots of pattern-recognition tasks they just could not do, no matter how much data
they got or how they were trained. This more or less killed the field for almost two decades.

The revival of interest in neural networks, at the time also called “connectionism”, came mostly from
psychology. The two important ideas were the recognition that adding one or more intermediate layers
could drastically expand the expressive power of these models, and that the intermediate layers could act as
distributed representations. In the late 1980s and the early 1990s, there was a lot of interest, both scientific
and popular, in the genuinely-impressive results which people got on various artificial problems, especially
when using back-propagation (Rumelhart, Hinton, and Williams 1986). There were again all kinds of stories
about thinking machines, “naturally intelligent systems”10, technological unemployment, artificial intelligence,
etc. Interest in neural networks actually played key role in the development of “statistical learning” as a
field (e.g., Anthony and Bartlett (1999)), which is why one of our leading conferences is called “Advanced in
Neural Information Processing Systems”.

Neural networks nonetheless faded from popularity for about two decades between the mid-1990s and the
early-2010s, for two reasons.

1. As predictive models, it turned out that people were able to get much higher performance using
different kinds of models. In particular, kernel and support vector machines were, for a long time, the
state-of-the-art, random forests had (and have) their partisans, etc.

2. Even when neural networks could generalize in the statistical sense, i.e., predict well on new data
points drawn from the same distribution, they did not find it easy to generalize in ways that humans
find easy. If instead of using an 8× 8 board to play checkers one introduces a 9× 9 board, a human
player will be a bit hesitant, but not totally at a loss of what to do; a neural network would need to
be completely retrained. More generally, neural networks have found it extremely hard to incorporate
abstract concepts, and general rules using those abstractions. It’s clear that abstractions and rules can
be implemented using neural networks, but it wasn’t clear how to learn them, and back-propagation,
starting from pretty un-structured starting points, seemed to be very bad at doing so. (Marcus (2001)
remains a very good statement of this line of criticism.)

The second issue is a real one for cognitive science, psychological modeling and artificial intelligence, but less
important for statistical learning. Nonetheless, the combination of the two put neural networks into eclipse,
again11.

All of this changed around 2012–2013, when people began publishing extremely impressive statistical results
8If you look at some of the classics of late-19th century psychology, like James (1890), you will see lots of diagrams which

look an awful lot like pictures of neural networks. These were speculations about some sort of “activity” or “energy” or “current”
flowing through distinct regions of the brain, accompanying, or implementing, processes of thought. It was only around 1900
that the great anatomist Santiago Ramon y Cajal proved that the nervous system is divided into distinct cells, which he named
“neurones”, rather than being (as some had held) a single continuous mass. The idea that the nervous system works by neurons
sending something from cell to cell, at junctions called “synapses”, and that synapes work in one direction only, was established
by the great physiologist Charles Sherrington, who at least sometimes referred to the nervous system as a “network”. (Sherrington
(1906) is still a remarkably insightful work.) It wasn’t until the 1920s that it became clear that neurons sent electrical impulses
to their synapses, but the transmission at the synapse is chemical. It then became clear that a neuron’s electrical “spike” was
only triggered if the total stimulation it received crossed some threshold. This is what McCulloch and Pitts (1943) modeled in a
deliberately simplified way, and what turned into the activiation function.

9I am simplifying, and in particular glossing over the extremely important work done by Hebb (1949), Hayek (1952) and the
now-neglected but actually very-influential Ashby (1960).

10The title of one of the best of the semi-popular books at the time, Caudill and Butler (1990), which I still actually recommend.
11When I started teaching the predecessor to this course in 2006 and included neural networks, the feedback was that I was

wasting the students’ time with an obsolete technique, and by 2009 I’d dropped the topic.

9

using deep neural networks on image classification and natural-language-processing tasks. There were a
couple of reasons why the new models worked better than their predecessors of 15–20 years before.

1. New architectures. In particular, for image-processing tasks, it turned out to be extremely important
to use “convolutional” neural networks12, rather than unstructured ones.

2. Improved training. In particular, the bells and whistles added on to back-propagation and stochastic
gradient descent that I alluded to.

3. Lots of data. Truly startingly large data sets are now available, and can be used in the training process,
at least if you have a lot of computing power.

The result over the last decade has been a flood of work on deep learning, accompanied, in the popular press,
by stories about thinking machines, fears about technological unemployment, and speculations about how
general artificial intelligence is right around the corner13. Some of this results in extremely impressive and
widely-applied technologies, some of it amounts to re-discovering the wheel (as shown by, e.g., Dacrema,
Cremonesi, and Jannach (2019)), and some of it poses genuine unsolved scientific problems.

Three Interesting Aspects of Deep Learning

This section is long, and optional (in 2022), but hopefully interesting.

The recent revival of multilayer neural networks has a lot of specific engineering accomplishments to point to,
as well as a lot of more ambiguous feats of engineering. But there are also, I think, three specific scientifically
interesting phenomena it has revealed14:

1. Adversarial examples, where tiny, humanly-imperceptible perturbations to the inputs result in
drastic changes to the output;

2. Interpolation, where the models generalize to new data (from the same distribution) despite perfectly
fitting the training data, even in cases where the model capacity is high enough to memorize random
labels;

3. Alienness and cheating, where the models achieve high performance at matching human classification
despite evidently using features which are very different from the ones human beings attend to, and
often getting to high performance by using features that seem to us like accidents or tricks.

It is not clear how, or whether, these phenomena are related. It’s not even clear how much they are specific
to deep neural networks, as opposed to (say) highly-parameterized systems trained by gradient descent, or
(say) any sort of high-dimensional classifier with good accuracy over many classes.

Adversarial Examples

were first noticed, and named, by Szegedy et al. (2013); the phenomenon is simply illustrated with one of
their examples. Here are some images, from the standard “ImageNet” dataset (Deng et al. 2009), which were

12Mathematically, the convolution of two functions f and g on the same domain is another function f ∗ g, where (f ∗ g)(r) =∫
f(u)g(r − u)du. On a discrete domain, we’d have instead (f ∗ g)(r) =

∑
u
f(u)g(r − u). In a convolutional neural network,

we have inputs x(r), where the discrete coordinates r represent palces in a sequence or pixels on a grid, etc. The kernel (sorry,
but that’s what it’s called) function g(h) is chosen so that it goes to zero when ‖h‖ is too big. So we started with x(r), and
get t(r) =

∑
u
x(r)g(r − u), which is a kind of local average or local weighted sum of the original input features. The kernel

function might have some weights or other parameters buried inside it, but if so we apply the same parameters everywhere
along the original data. (We typically hold the “support” of the kernel, the range of values h where g(h) 6= 0, fixed during
training.) This means we do the same transformation_ to the original features everywhere. Convolutional transformations were
known already to be a very good way of discriminating textures in images and detecting edges. The successes of deep-learning
image-classifiers came from using multiple layers of convolution.

13So far as I am aware, however, the previous episodes of excitement did not include cults devoted to placating the future AI
god. Whether this counts as progress or not depends, I guess, on how entertaining you find such expressions of the myth-making
impulse, and the irony of calling it “rationalism”.

14“Adversarial examples” and “interpolation” are pretty standard names in the literature; “alienness” and “cheating” are not,
but there isn’t a good single phrase for that phenomenon.

10

all correctly classified, with very high confidence, by a then-leading system:

11

12

Here are (believe it or not) different images, which were all classified as (believe it or not) ostriches:

13

14

Here is the difference between the two images, exaggerated by a factor of 10:

15

16

This isn’t just a bizarre glitch where this one system happens to do badly on this one image. It turns out that
we can usually take those correctly-classified images, and by adding a humanly-imperceptible perturbation,
get something which is, with high probability, classified as belonging to basically any class we want.

Now you might suppose that what’s going on here is that image are very high-dimensional, but n for the
ImageNet dataset is merely 3.2 million, so the classifier learns to do well on a little “island” around each
image but has no idea what to do when we step off one, and so it says something basically random. But if
that were true then these classifiers should be vulnerable to random noise, too. Yet adding a larger amount
of IID Gaussian noise doesn’t send things haywire in the same way (Szegedy et al. 2013, 6–7).

In computer science, people often talk about “the Adversary” deliberately crafting inputs or examples to get
bad performance out of a method or algorithm. It’s a vivid way of reasoning about how badly things can go
wrong, and ultimately of obtaining worst-case performance guarantees for algorithms15. Szegedy et al. (2013)
called their carefully-tweaked images “adversarial examples” because they’re what an Adversary might do
to fool the classifier — find the smallest perturbation which achieves a desired wrong label with at least a
specified confidence. The name has stuck.

One reason the name has stuck is that adversarial examples turn out to be ubiquitous in deep neural networks.
You can usually eliminate any particular one you find, but there are (seemingly) always others. And it’s not
just image classifiers: adversarial examples are also known for text classification (Gao, n.d.), audio-to-text
and other sorts of audio signal processing (Taori et al. 2019), reinforcement learning algorithms that play
games or control robots (Gleave et al. 2020), et cetera. This ubiquity has, potentially, implications for
deploying these systems in the real world. The fact that one can print adversarially-perturbed images and
have the print-outs fool image classifiers (Brown et al. 2017) at the very least doesn’t sound good for, say,
self-driving cars. But here we should focus on the scientific issues that these examples raise. (If nothing else,
our understanding of the scientific issues will shae our assessment of the practical implications.)

The thing to focus on, I think, is that ubiquitous, hard-to-eliminate presence of these examples. This suggests
that it’s worth looking for some very general, equally-ubiquitous aspect or property of very large neural
networks, operating on high-dimensional inputs, trained by gradient descent, which explains why adversarial
examples exist. (It could be that there’s some very specific explanation for adversarial examples in every
different network, and those specifics can’t be usefully abstracted and generalized, but that’d be a lot of
coincidences.) It might even be that the relevant explanation isn’t about neural networks specifically, but
(say) any sort of high-dimensional classifier trained by gradient descent, and we just happened to notice the
phenomenon first in deep learning.

Nobody has an explanation for adversarial examples which accounts for all the known facts and commands
general consent among knowledgeable experts. There are intriguing suggestions about the role of computational
constraints (Bubeck, Price, and Razenshteyn 2019), about un-intuitive properties of the geometry of high-
dimensional spaces (Shamir et al. 2019), and, relatedly, about a property of high-dimensional distributions
called “concentration of measure”16. But the truth is we just do not know why this happens.

15The rhetoric might owe something to the lingering influence of Wiener (1964), and, behind that, the cunning and malicious
demon of Descartes (1637).

16The last of these is worth a footnote. To illustrate “concentration”, consider a radius-1 sphere in p dimensions. What
fraction of its volume is within a distance ε of its surface? Well, the fraction of its volume which isn’t is the fraction of its volume
inside the smaller sphere of radius 1− ε; that fraction has to be (1− ε)p. So the fraction of volume within ε of the surface is
1− (1− ε)p. But this → 1 exponentially fast as p→∞, no matter how small we make ε. Even though the exact surface of the
sphere has volume 0, in high dimensions most of the volume is in fact “concentrated” exponentially close to the surface. This is
true not just for sphere but also for cubes and for pretty much any geometric shape you can easily describe. Probabilistically,
if we have a distribution that’s independent over p variables, then unless the distribution is really weird, there’s a set of very
small volume (like the surface of a sphere) which the probability concentrates on (Boucheron, Lugosi, and Massart 2013). More
exactly, a distribution is “concentrated” when, if a set has any positive probability, it can be expanded by a very small distance
to get a set with at least 1/2 of the total probability. This phenomenon of “concentration” is particularly clean for distributions
of many independent random variables, but it also holds if the dependence between variables is not too strong (Kontorovich and
Raginsky 2017). The suggested relevance of this to adversarial examples is, roughly, that the set of images classified as (say)
“trucks” needs to have positive probability, as does the set classified as (say) “pandas”. So there would need to be a very small
expansion of the classified-as-cars set with probability > 1/2, and a very small expansion of the classified-as-pandas set with
probability > 1/2, which means that the two expansions need to overlap, and so two small steps take us from trucks to pandas.
If the argument in this form seems sketchy, you’re not wrong, but see (Mahloujifar et al. 2019).

17

Generative Adversarial Networks

Back in the 1980s and 1990s there was a lot of interest in ideas like “actor-critic” learning architectures,
co-evolving classifiers and sets of examples, etc.17 With the rise of statistical learning, much of this work
faded into obscurity. In particular, if your goal is “low risk”, and you think of “risk” as “expected loss under
the same distribution”, it’s hard to know what to make of the idea of evolving training problems to be hard
for your classifier.

The discovery of adversarial examples has nonetheless led to a recent re-invention of ideas like this, though
usually without any recognition of the precedents. These are generative adversarial networks (GANs),
named by Goodfellow et al. (2014). The idea is to train up two networks, a generator and a discriminator,
say G and D. The job of the discriminator D is easily described: it gets fed cases which are either from the
real data or are simulation output from the generator, and it needs to say which is which; one typically uses
a log loss, and balances the number of real data cases against the number of generated ones. The generator
needs to come up with stuff that fools the classifier, and gets rewarded conversely.

We can think of this as a game with two players, and ask about equilibria, where neither player can improve
their pay-off by changing their strategy on their own. (The learning process won’t necessarily converge on an
equilibrium, but equilibria will generally be fixed points of the learning process.) One equilibrium, emphasized
by Goodfellow et al. (2014), is when the distribution produced by G is the same as the distribution of the
data, and the discriminator assigns probability (1/2, 1/2) to every example. In that case, the GAN will have
learned to mimic the distribution perfectly. But there’s little reason to think that GAN training will typically
approach this.

Interpolation, and Generalizing Despite Memorizing

Throughout the course, I have emphasized that merely memorizing the training data is generally a very bad
idea. Partly this is because the training examples are of no intrinsic interest, being a product of accidents of
sampling and sheer irreproducible noise in the data-generating process. But still more it’s because it doesn’t,
usually, help us to generalize to new data.

Now there was already an important caveat to those warnings, which I know occurred to some of you: nearest
neighbors, kNN with k = 1, does very little other than memorize the training data. But we saw in Lecture 11
that, under some reasonable-sounding assumptions about continuity, the asymptotic risk of nearest neighbors
is (at most) twice the risk of the optimal decision rule. That’s asymptotically as n→∞, but since it is true
in the limit, it must also be true that at finite n, nearest neighbors has some ability to generalize.

So 1NN gives us an example of a learning procedure which (i) always memorizes, but (ii) can generalize if the
data-source has the right properties18, so (iii) in-sample performance and true risk can be incredibly different.

I bring this up in the context of neural networks because it turns out that very large, “over-parameterized”
neural networks turn out to show the same combination of (i), (ii) and (iii). In a series of remarkably simple
yet convincing experiments, Zhang et al. (2021) took networks that were known to do well on standard
image-classification data sets, and randomly re-assigned the class labels of the images, so that there was, in
fact, no connection between the image and the label. The networks succeeded in memorizing the new labels,
but of course their out-of-sample performance could be no better than chance. (This is what 1NN would
do in this situation.) But, again, with the correct labels, these same networks trained to memorization do
generalize. So these architectures have the capacity to memorize noise, but still generalize. In fact, it is fairly
common, in applications, to train large neural networks to the point of memorization and beyond, and till get
good performance under cross-validation or on testing sets.

17I won’t give a huge collection of references here, but will just mention Rosin and Belew (1997) as an example of a large
literature I happen to have handy a quarter-century later.

18If the data-generating process is such that the optimal rule always does the opposite of what nearby points do (like a
checkerboard. . .), then nearest neighbors will work poorly. See Thornton (2000) for an elaboration of this point, and some
thought-provoking implications about the limitations of similarity-based learning.

18

https://www.stat.cmu.edu/~cshalizi/dm/22/lectures/11/lecture-11.pdf

Exactly what is going on is not clear. In addition to 1NN, something analogous to this was already known to
happen with boosting (which we looked at in Lecture 13), where the most plausible (though not certain)
explanation was that boosting increases the margin, and high-margin classification implies generalization
(Schapire et al. 1998). Spurred by trying to understand these puzzles, it has also turned out that something
similar can happen with high-dimensional linear models.

To appreciate this last point, imagine we’re doing linear regression of Y on ~X, but dim ~X = p > n. The OLS
estimate of the regression coefficients requires inverting xTx, but this inverse doesn’t exit when p > n. So
let’s back up a step in OLS’s chain of logic. Minimizing the MSE gives us an equation for β̂,

xTxβ̂ = xTy

and the impulse is of course to get β̂ by itself by multiplying both sides with (xTx)−1 from the left. Again,
we can’t do that when the inverse doesn’t exist, but that doesn’t mean that the equation for β̂ doesn’t have
solutions. Rather, what happens is that there are infinitely many solutions19.

When there are infinitely many equally good potential solutions, we’re free to pick one however we like, and
many people have thought it sounded sensible to pick the solution with the smallest norm, the imaginatively-
named min-norm solution:

β̃ = argmin
b:xT xb=xT y

‖b‖

That is, we take the shortest vector which solves the equation. If there’s a unique β̂, then of course β̃ = β̂,
but in the high-dimensional case this still gives us a well-behaved prescription for finding a coefficient vector
(see exercises).

For many, many distributions, if increase the dimension p of ~X but use the min-norm β̃, we get a generalization
error that decreases in p once p > n. It won’t always, but it can.

Now, in regression, it is always true that

E
[
(Y − µ̂(X))2|X = x

]
= Var [Y |X = x] + (E [(µ(x)− µ̂(x)])2 + Var [µ̂(x)] (20)
= (system noise) + (squared bias of estimate) + (variance of estimate) (21)

In these over-parameterized regimes, we’ve driven bias towards zero. But, under these distributions of data,
the variance of the estimate is also not exploding. What’s happening with high-dimensional linear models,
for instance, is that selecting the minimum norm solution is, implicitly, imposing stronger and stronger
constraints on that norm as p grows. (It’s very close to doing ridge regression and increasing the strength of
the penalty as p grows.)

Many people suspect that something like this is at work with deep neural networks. That is, some combination
of their architecture and their training process meshes with the kind of tasks we give them, so that some
implicit regularization happening on those problems, even though they could memorize any old random noise.
But exactly what’s going on here, or how we could characterize it to know when neural networks will be
reliable, is still unknown (Belkin 2021).

Alien Cheaters, or, What the Frog’s Eye Tells the Frog’s Brain, or, What Is It
Like to Be a Convolutional Neural Network?

Here is an image that a leading-in-2015 neural network confidently classifies as a cheetah:
19Similarly, even if p < n, if two (or more) columns of x are linearly dependent, i.e., there is collinearity among the regressors,

the difficulty isn’t that there are no solutions to β̂. The difficulty is that we can “trade off” coefficients among the linearly-related
regressors, without changing any of the predictions, so there are actually infinitely many equally good coefficient vectors.

19

https://www.stat.cmu.edu/~cshalizi/dm/22/lectures/13/lecture-13.pdf

Here is another image which the same neural network is confident is also a cheetah (Nguyen, Yosinski, and
Clune 2015):

If you look at the second image and, without prompting, also see a cheetah, you are a very unusual primate
and your brain should be promptly (but humanely!) studied by neuropsychologists for the good of science.
For most of us, the second image looks nothing like a cheetah.

Now, the network in question, like almost all the others, was trained to imitate human judgments and
evaluations on standard image repositories20. Those systems manage to do this successfully. But when we
step outside those data sets, it becomes clear that the way the systems are processing images must be very
different from what we East African Plains Apes do. The scientific questions are thus:

• what features do these systems use,
• why do they use those features, and
• is using those features a good idea?

20The photograph data sets were mostly collected by scraping the Web. Recht et al. (2019) went through the interesting
exercise of trying to replicate the best-known of these, ImageNet, by repeating the published data-collection protocol. (Even
that was hard.) They then examined the performance of various published neural networks trained on the original ImageNet
on their replication data. Unsurprisingly, all of them did worse on the replication did. Very surprisingly (at least to me), the
increase in average loss was about the same for all systems!

20

To put the last point a little science-fictionally21, have we (unintentionally) invented devices which process the
world in an alien but equally effective way, or have we made something superficially impressive but ultimately
stupid?

To dive into this, let’s start by examining how the second image above was created. Nguyen, Yosinski, and
Clune (2015) began with a random image, and then optimizing the predicted probability of belonging to the
desired class. (Specifically, they used an “evolutionary” optimization algorithm, keeping multiple candidates
around, making random “mutations” to them, and copying the ones which did the best job of fooling the
image-classification network.) What this tells us is that there is a region (or set of regions) in image space
where the classification network assigns very high confidence (say, > 99.6%) to the image being a cheetah (or
whatever). This region includes actual pictures of cheetahs, but also certain images of video snow, weird
blobs, etc., etc. If we were to ask human beings to classify images the same way, the region where a human
subject would say “yes, that’s definitely a cheetah” would have some overlap with the machine, around the
actual pictures, but not in the wilder regions of the image space. On the other hand, normal human beings
from my culture immediately recognize these as depictions of cheetahs, though it’s not at all clear a neural
network trained on a collection of photographs would do so:

This suggests two plausible conclusions:

1. Human beings and current neural networks classify based on very different sets of visual features (or at
least using very different weightings on whatever features might be common to both);

2. Human beings and neural networks both give high-confidence classifications to many images which
objectively, on a pixel-by-pixel level, are very different from prototypical photographs of members of
the class.

Point (2) is particularly suggestive: maybe we’re looking at a general property of classifiers in high-dimensional
spaces, or something like that. But this is, currently, even less well understood than the existence of adversarial
examples. In this context, though, adversarial examples are another indication that whatever features neural
networks use are very different from the features humans are sensitive to, since objectively-small and
humanly-indistinguishable changes clearly move images across neural network classification boundaries.

The mere fact that neural networks use very different visual features than we do isn’t necessarily bad. At least,
it’s bad if we want to use these neural networks as models of human visual perception, but not necessarily
bad as engineering. (A car is a very bad model of a horse, but it doesn’t run any worse on that account, and
making cars move more like horses wouldn’t improve the driving experience.) But there are very worrying
indications that, at least as currently designed and trained, neural networks end up using visual features
which are, in various ways, bad for their intended applications.

Here22 is an image classified23 by a production system as “sheep”:

There are, indeed, no sheep here. But in training sets, there are also few (no?) pictures of green mossy
mountain scenes without sheep (or at least other animals) for visual interest. Whatever features the neural
network uses links this image to others in the training set, and it spits out the appropriate classification for
them. It’s learned to associate the label “sheep” not with the animals, or even (to be cautious) photographic
traces of animals, but with certain visual features which were, in the training set, statistically-reliable signs
of the animals24.

There is good reason to believe that in this case the signs are things like the text of the meadows. I mentioned
earlier that modern image classifiers rely heavily on “convolutional” network layers, which apply the same

21John Campbell (1910–1971), an influential early editor of science fiction, was supposed to tell his authors “Write me a story
about a creature that thinks as well as a man, but not like a man”. (You will not be the first to suggest simply writing a story
about a woman.)

22I learned of this example from Janelle Shane, at [https://www.aiweirdness.com/do-neural-nets-dream-of-electric-18-03-02/],
which provides more informative mis-classifications; I strongly recommend Shane’s site if the material in these notes is at all
interesting.

23Actually, as you can read in the image, this system doesn’t just classify, it provides automatically-generated captions and
tags. This is basically an elaboration on classification. (It’s a little more complicated; the neural network has learned to associate
bits of text with images by mapping them to a common latent space.)

24The connection between signs and probability is very old, and well-explored in Hacking (1975).

21

https://www.aiweirdness.com/do-neural-nets-dream-of-electric-18-03-02/

Figure 1: http://publicdomainvectors.org/photos/cheetah-cartoon-publicdomain.jpg

22

http://publicdomainvectors.org/photos/cheetah-cartoon-publicdomain.jpg

Figure 2: https://publicdomainvectors.org/photos/CHEETAH.png

23

https://publicdomainvectors.org/photos/CHEETAH.png

Figure 3: https://www.publicdomainpictures.net/pictures/450000/velka/image-16505217656FP.jpg

24

https://www.publicdomainpictures.net/pictures/450000/velka/image-16505217656FP.jpg

Figure 4: https://www.aiweirdness.com/content/images/public/images/e3c62683-f530-49cf-aed2-
c2868855f656_2000x1364.jpg

25

https://www.aiweirdness.com/content/images/public/images/e3c62683-f530-49cf-aed2-c2868855f656_2000x1364.jpg
https://www.aiweirdness.com/content/images/public/images/e3c62683-f530-49cf-aed2-c2868855f656_2000x1364.jpg

transformation locally over the whole of the image. Convolutional filters are very good at detecting rather
local features of images like texture, but are intrinsically ill-suited to notice more global properties. Take an
image, chop it into little squares, shuffle the squares around, and we get something human beings see as very
weird (and perhaps turn into a jig-saw puzzle); a convolutional neural network will however “see” very little
difference25. If it’s learned to associate one label with “lots of fuzzy green”, well, there’s still a lot of fuzzy
green. . .

If this was just one goof, well, who cares, that’s only a mildly-amusing anecdote. More serious is Carter et al.
(2021), which explored the issue of what features image classifiers really use by seeing how much of an image
could be “masked” without altering classification performance. Results on leading systems looked like this:

That is, the images are being classified correctly (with at least 90% confidence) using only thin strips at
the borders. Again, this is enough to get at predominant textures, which seem to be most of what this
(convolution-reliant) system uses. But this should be very worrisome when we consider any sort of real-world
use. Even if we’re not worried about someone deliberately trying to fool the system26, the sheer, inhuman
strangeness of the system ought tio make us doubt that we can anticipate how it will work in the wild.

Now in fact there is very good evidence that neural networks frequently seize upon features which are predictive
in their training context, but only in their training context, in “high-stakes” situations. A compelling (even
disturbing) one comes from Zech et al. (2018), which re-examined the ability of neural networks to diagnose
diseases from chest x-rays. It turned out that x-rays from different diseases had been (predominantly) collected
using different types of machines (portable vs. fixed) and at different hospitals; that the machine and hospital
information was printed on the x-ray image; and that the neural network had learned, in training, to give a
lot of weight to that part of the image. So the neural network learned to be accurate, but in a useless way.

Or, more exactly, in a way which will continue to be accurate only if the environment in which the neural
network is used continues to work the same way as the training environment. If something (other than
the neural network!) continues shunting patients with different diseases to different hospitals, and hospital
information keeps being added to x-ray images in the same way as before, the neural network will keep
working just fine. The doctors asked for a system to do diagnosis (a real-world problem). The data analysts
translated that into a tractable statistical problem: come up with a learning process which will find a decision
rule with low risk in that environment. They solved that problem, they ran through the learning process, and
they got a rule which delivered exactly on that promise. The snag is that “diagnose reliably” is not the same
as “classify accurately in a given environment”. If we are unhappy that the rule doesn’t also have low risk in
other, different environments that the learning process was never exposed to, we have no one to blame but
ourselves.

It should, perhaps, not be surprising that we see behavior like this from neural networks. One of the
classic early papers about biological neural computation was titled “What the frog’s eye tells the frog’s
brain” (Lettvin et al. 1959). By very careful experimentation, they showd that the frog’s retinas contained

25There are many papers documenting the importance of texture for convolutional neural networks, but I will just mention
Geirhos et al. (2019) and Brendel and Bethge (2019) (the latter did a version of the chop-into-chunks-and-shuffle experiment).

26But why wouldn’t we be? If the system is worth building for a real-world application, it’ll also be worth somebody’s time to
try to subvert. “What gets measured gets manipulated” and “Some people cheat” are two very sound design principles. . .

26

neural networks which detected the presence, location and velocity of small dark rapidly-moving blobs, and
transmitted that information along the optic nerve to the frog’s brain. In the frog’s ecological context, that
was information about flies and other insects the frog could catch and eat with its tongue. In the lab, those
small dark jittery blobs could be all kinds of things, and in environment with (say) many other little dark
flying bits (gravel? metal shavings?) this part of the percentual system mightn’t work very well for a hungry
frog, or at least might need to be supplemented with other information.

We have developed neural networks which (at their best) work like that. They are very little like intelligence,
as we experience conscious rational thought, or even the forms of unconscious thought underlying (say)
grammar. Rather, they are much closer to unconscious, automatic perception. Experience and evolution
has tuned our perceptions to work well in a certain range of environments, it is (as the psychologist Gerd
Gigerenzer puts it) “ecological rational”. But outside those environments, our automatic perceptions can go
horribly awry.

Some would argue that a great deal of human intelligence is also only “ecologically rational”. (Gigerenzer, for
one, makes a strong case for this (Gigerenzer 2000).) We look at the mistakes of a neural network and laugh,
or swear not to use something so stupid. But our own stubborn visual illusions seem to us mere quirks which
in no way detract from our dignity as rational creatures. Perhaps we’re right about this; perhaps this is mere
chauvinism, and a truly alien intelligence, “vast, cool, and unsympathetic” (as the poet says), would draw no
distinction between us and our artifacts27.

There is however one straightforward way in which it is bad for neural networks to use weird-to-us features.
We want to deploy those neural networks in our world, in a physical and social environment we have grown
up in and have built to work with our perceptions, modes of thought and bodies. If our machines do not
work well in that range of environments, they are badly engineered for us, and we should designed systems
which work better for us. The alternative is to redesign our world for the convenience of our machines. That
seems both stupid, and inconsistent with “the human use of human beings” (Wiener 1954) — which doesn’t
mean it won’t be tried.

Before closing this section, I want to mention two things. First, it is very plausible that there is some
connection between this issue, that of using strange and apparently fragile features, and the other issues
I highlighted, those of adversarial examples and interpolative generalization. Plausible, but by no means
established! Second, it is, again, quite unclear how far this issue is peculiar to deep neural networks. If
anyone has tried to comparable studies on, say, support vector machines or random forests, I haven’t seen it.
(I haven’t tried to do it myself!) But it might be that we’re looking at phenomena which are fairly generic to
large-scale learning systems, rather than specific to neural networks.

Further reading

Goodfellow, Bengio, and Courville (2016) is, deservedly, the standard text on deep learning, though algorithmic
details advance rapidly, and are hard even for specialists to keep up with.

From the last burst of interest in neural networks, Churchland and Sejnowski (1992) is still good, and recently
brought back into print. Ripley (1996) is full of good ideas about statistical applications, and has the unusual
distinction of being written by a statistician deeply involved in the development of R.

On distributed representations, Abbott and Sejnowski (1998) is a now-classic volume of important, and
generally readable, papers. Churchland and Sejnowski (1992) is also a good reference on this topic. That the
meaning of the activity of neural networks might only reside in the global configuration, and not in individual
cells, was more or less explicit already in the work of some of the pioneers, such as Hayek (1952) and Hebb
(1949) (and, at a different level of biological organization, Luria (1973)).

27One might even imagine those vast, cool, unsympathetic intellects being, in some distant future, remote descendants of our
current neural networks, carrying pattern-recognition modules optimized for ImageNet around as traces of an evolutionary past
as distant for them as our own blood’s mimicy of the chemistry of prehistoric seas. But I imprinted on Arthur C. Clarke as a
boy, and am launching a flight of fancy, and we should return to our actual machines.

27

As discussed above, our understanding of how models with the capacity to memorize noise can also generalize
to new data is still very incomplete. I recommend the review/discussion paper by Belkin (2021), written by
one of the leaders in the field and with excellent references to earlier work. (If this intrigues you, you might
also try your hand at the exercises.)

Exercises

I recognize that it’s a bit perverse that all the exercises in notes on neural networks relate to over-parameterized
linear models.

1. Min-norm linear regression, part 1. Consider the ordinary-least squares problem xTx~b = xTy, where
p > n. Let’s say that any vector ~b which satisfies this equation is an “OLS solution”. Recall (from linear
algebra) that the collection of vectors ~v where a~v = 0 is called the null space of the square matrix a.
a. Show that if ~v1 and ~v2 are both in the null space of a, then c1~v1 + c2~v2 is also in the null space.

(This justifies the “space” part of the name “null space”.)
b. Show that the dimension of the null space of xTx is at least p− n. (Some people call this number

the “nullity” of the matrix.) Can you given an example of an x where the dimension of the null
space is larger than p− n? (We’re assuming p > n here so don’t try p = 1, n = 1000 or anything
silly like that.)

c. Show that if ~b is an OLS solution, and ~v is in the null space of xTx, then ~b+ ~v is also an OLS
solution. Use this to explain why the space of OLS solutions has dimension p− n (at least).

d. Show that the vector at the origin of p-dimensional space, ~0, has a unique projection on to the space
of OLS solutions. Explain why the norm of the projection of ~0 is the minimum value of the norm
in the whole space of OLS solutions. Hint: for any vector ~v, ‖~v‖ = distance(~v,~0) = distance(~0, ~v).
(Why?)

2. Min-norm linear regression, part 2. Suppose that p > n, and we look for the minimum norm solution:

β̃ = argmin
b:xT xb=xT y

‖b‖

a. Explain why
β̃ = argmin

b:xb=y
‖b‖

b. (Harder) Explain why
β̃ = xT (xxT)−1y

The quantity xT (xxT)−1 is often written as x†, and called28 the Moore-Penrose pseudo-
inverse, or Moore-Penrose generalized inverse, of x.

3. Interpolation in the linear model and risk. Consider the situation where Y = Z+ε, Z ∼ Unif(−10, 10) and
ε ∼ N (0, 1). However, we do not get to see Z, but instead get to observe ~X where ~Xj = sin (ωjZ + φj).
The frequencies ωj are also N (0, 1), and the phases φj are ∼ Unif(0, 2π). The coordinates of ~X are
thus random Fourier features, as in a previous lecture. Notice that while there is a simple relationship
between Y and Z, there is no exact linear relationship between Y and ~X, though one can come
increasingly close by using more and more random features, say d.
a. Write a function which will generate n IID (Z, Y) pairs from the specification above. It should

return a two-column data frame.
b. Write a function which takes in a two-column, n-row data (Z, Y) data frame, as from (a), and a

two-column, d-row array (or data frame) of ωj and φj , and returns the (d+ 1)-column, n-row data
frame of (~X, Y) pairs.

28More pedantically, the Moore-Penrose pseudo-inverse of a n× p matrix a is the (unique) p×n matrix a† such that aa†a = a
and a†aa† = a† (so a and a† “cancel out” in matrix products), and where aa† and a†a are both symmetric. If p = n and a is
invertible, then a† = a−1. If n < p but a has full rank (=linearly-independent rows), then a† = aT (aaT)−1. If n > p but a has
full rank (=linearly-independent columns), then a† = (aT a)−1aT , which should look familiar.

28

c. Write a function which takes a data frame as returned by (b), and a vector of d coefficients, and
returns the MSE of using those coefficients, applied to the ~X columns, to predict the ~Y column.
(You can assume the intercept term is zero.)

d. Write code which, given a data frame as returned by (c), either finds the OLS coefficients, if n > d,
or finds the min-norm solution. In doing the latter, you may find the ginv function from the MASS
package helpful.

e. Generate a training set with n = 100 and d = 1000. (Make sure to save the ω, φ values for the
features in their own array.) Calculate the in-sample MSE of linear models fitted to the first p
features, for p ∈ 1 : d.

f. Generate an evaluation set with n = 100000 and the same d = 1000 random Fourier features. For
each p ∈ 1 : d, calculating the MSE of linear models fitted to the first p features on the training
set on this evaluation set.

g. Plot in-sample and generalization MSE as a function of p. What happens?
h. Plot the (L2) norm of the estimated coefficients vectors as a function of p. What happens?

References

Abbott, Laurence F., and Terrence J. Sejnowski, eds. 1998. Neural Codes and Distributed Representations:
Foundations of Neural Computation. Cambridge, Massachusetts: MIT Press.

Anthony, Martin, and Peter L. Bartlett. 1999. Neural Network Learning: Theoretical Foundations. Cambridge,
England: Cambridge University Press.

Ashby, W. Ross. 1960. Design for a Brain: The Origins of Adaptive Behavior. 2nd ed. London: Chapman;
Hall.

Baroni, Marco, Georgiana Dinu, and German Kruszewski. 2014. “Don’t Count, Predict! A Systematic
Comparison of Context-Counting Vs. Context-Predicting Semantic Vectors.” In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics [Acl14], 238–47. Baltimore, Maryland:
Association for Computational Linguistics. http://www.aclweb.org/anthology/P/P14/P14-1023.

Belkin, Mikhail. 2021. “Fit Without Fear: Remarkable Mathematical Phenomena of Deep Learning
Through the Prism of Interpolation.” Acta Numerica 30:203–48. https://doi.org/https://doi.org/10.1017/
S0962492921000039.

Boucheron, Stéphane, Gábor Lugosi, and Pascal Massart. 2013. Concentration Inequalities: A Nonasymptotic
Theory of Independence. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199535255.
001.0001.

Brendel, Wieland, and Matthias Bethge. 2019. “Approximating CNNs with Bag-of-Local-Features Models
Works Surprisingly Well on ImageNet.” In International Conference on Learning Representations 2019 [Iclr
2019]. OpenReview.net. https://openreview.net/forum?id=SkfMWhAqYQ.

Brown, Tom B., Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer. 2017. “Adversarial Patch.”
In Machine Learning and Computer Security Workshop, edited by Jacob Steinhardt, Bo Li, Chang Liu,
Nicolas Papernot, Percy Liang, and Dawn Song. http://arxiv.org/abs/1712.09665.

Bubeck, Sébastien, Eric Price, and Ilya Razenshteyn. 2019. “Adversarial Examples from Computational
Constraints.” Edited by Kamalika Chaudhuri and Ruslan Salakhutdinov. PMLR. https://proceedings.mlr.
press/v97/bubeck19a.html.

Carter, Brandon, Siddhartha Jain, Jonas Mueller, and David Gifford. 2021. “Overinterpretation Reveals
Image Classification Model Pathologies.” In Advances in Neural Information Processing Systems 34 [Neurips
2021], edited by M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. Wortman Vaughan, 15395–15407.
Curran Associates. https://proceedings.neurips.cc/paper/2021/hash/8217bb4e7fa0541e0f5e04fea764ab91-
Abstract.html.

29

http://www.aclweb.org/anthology/P/P14/P14-1023
https://doi.org/https://doi.org/10.1017/S0962492921000039
https://doi.org/https://doi.org/10.1017/S0962492921000039
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://openreview.net/forum?id=SkfMWhAqYQ
http://arxiv.org/abs/1712.09665
https://proceedings.mlr.press/v97/bubeck19a.html
https://proceedings.mlr.press/v97/bubeck19a.html
https://proceedings.neurips.cc/paper/2021/hash/8217bb4e7fa0541e0f5e04fea764ab91-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/8217bb4e7fa0541e0f5e04fea764ab91-Abstract.html

Caudill, Maureen, and Charles Butler. 1990. Naturally Intelligent Systems. Cambridge, Massachusetts: MIT
Press.

Churchland, Patricia S., and Terrence J. Sejnowski. 1992. The Computational Brain. Cambridge, Mas-
sachusetts: MIT Press.

Dacrema, Maurizio Ferrari, Paolo Cremonesi, and Dietmar Jannach. 2019. “Are We Really Making Much
Progress? A Worrying Analysis of Recent Neural Recommendation Approaches.” In Proceedings of the 13th
Acm Conference on Recommender Systems (Recsys 2019). https://doi.org/10.1145/3298689.3347058.

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. 2009. “ImageNet: A Large-Scale
Hierarchical Image Database.” In 2009 IEEE Conference on Computer Vision and Pattern Recognition [Cvpr],
248–55. IEEE. https://doi.org/10.1109/CVPR.2009.5206848.

Descartes, René. 1637. Discours de La Méthode Pour Bien Conduire Sa Raison, et Chercher La Vérité Dans
Les Sciences. Leiden.

Gao, Hang anf Tim Oates. n.d. “Universal Adversarial Perturbation for Text Classification.” E-print,
arxiv:1910.04618. https://doi.org/https://doi.org/10.48550/arXiv.1910.04618.

Geirhos, Robert, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and Wieland
Brendel. 2019. “ImageNet-Trained CNNs Are Biased Towards Texture; Increasing Shape Bias Improves
Accuracy and Robustness.” In International Conference on Learning Representations 2019 [Iclr 2019].
OpenReview.net. https://openreview.net/forum?id=Bygh9j09KX.

Gigerenzer, Gerd. 2000. Adaptive Thinking: Rationality in the Real World. Evolution and Cognition. Oxford:
Oxford University Press.

Gleave, Adam, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart Russell. 2020. “Adver-
sarial Policies: Attacking Deep Reinforcement Learning.” In Eighth International Conference on Learning
Representations [Iclr 2020]. https://arxiv.org/abs/1905.10615.

Goldberg, Yoav, and Omer Levy. 2014. “word2vec Explained: Deriving Mikolov et Al.’s Negative-Sampling
Word Embedding Method.” Electronic preprint, arxiv:1402.3722. https://arxiv.org/abs/1402.3722.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Adaptive Computation and
Machine Learning. Cambridge, Massachusetts: MIT Press.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. “Generative Adversarial Nets.” In Advances in Neural Information
Processing Systems 27 [Nips 2014], edited by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K.
Q. Weinberger, 2672–80. Red Hook, New York: Curran Associates. https://proceedings.neurips.cc/paper/
2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html.

Hacking, Ian. 1975. The Emergence of Probability: A Philosophical Study of Early Ideas About Probability,
Induction and Statistical Inference. Cambridge, England: Cambridge University Press.

Hayek, Friedrich A. 1952. The Sensory Order: An Inquiry into the Foundations of Theoretical Psychology.
Chicago: University of Chicago Press.

Hebb, D. O. 1949. The Organization of Behavior: A Neuropsychological Theory. New York: Wiley.

James, William. 1890. Principles of Psychology. Henry Holt.

Kearns, Michael J., and Aaron Roth. 2019. The Ethical Algorithm: The Science of Socially Aware Algorithm
Design. Oxford: Oxford University Press.

Kontorovich, Aryeh, and Maxim Raginsky. 2017. “Concentration of Measure Without Independence: A Unified
Approach via the Martingale Method.” In Convexity and Concentration, edited by Eric Carlen, Mokshay
Madiman, and Elisabeth M. Werner, 161:183–210. IMA Volumes in Mathematics and Its Applications. New
York: Springer. https://arxiv.org/abs/1602.00721.

30

https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/https://doi.org/10.48550/arXiv.1910.04618
https://openreview.net/forum?id=Bygh9j09KX
https://arxiv.org/abs/1905.10615
https://arxiv.org/abs/1402.3722
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://arxiv.org/abs/1602.00721

Lettvin, J. Y., H. R. Maturana, W. S. McCulloch, and W. H. Pitts. 1959. “What the Frog’s Eye Tells the
Frog’s Brain.” Proceedings of the IRE 47:1940–51. https://doi.org/10.1109/JRPROC.1959.287207.

Luria, Aleksandr R. 1973. The Working Brain: An Introduction to Neuropsychology. New York: Basic Books.

Mahloujifar, Saeed, Xiao Zhang, Mohammad Mahmoody, and David Evans. 2019. “Empirically Measuring
Concentration: Fundamental Limits on Intrinsic Robustness.” In Advances in Neural Information Process-
ing Systems 32 [Neurips 2019], edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.
Fox, and R. Garnett, 5209–20. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/hash/
46f76a4bda9a9579eab38a8f6eabcda1-Abstract.html.

Marcus, Gary F. 2001. The Algebraic Mind: Integrating Connectionism and Cognitive Science. Learning,
Development, and Conceptual Change. Cambridge, Massachusetts: MIT Press.

McCulloch, Warren S., and Walter Pitts. 1943. “A Logical Calculus of the Ideas Immanent in Nervous
Activity.” Bulletin of Mathematical Biophysics 5:115–33.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. “Efficient Estimation of Word Represen-
tations in Vector Space.” In. http://arxiv.org/abs/1301.3781.

Minsky, Marvin, and Seymour Papert. 1969. Perceptrons: An Introduction to Computational Geometry.
Cambridge, Massachusetts: MIT Press.

Nguyen, Anh, Jason Yosinski, and Jeff Clune. 2015. “Deep Neural Networks Are Easily Fooled: High
Confidence Predictions for Unrecognizable Images.” In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (Cvpr 2015), 427–36. IEEE. https://doi.org/10.1109/CVPR.2015.7298640.

Recht, Benjamin, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. 2019. “Do ImageNet Classifiers
Generalize to ImageNet?” In Proceedings of the 36th International Conference on Machine Learning [Icml
2019], edited by Kamalika Chaudhuri and Ruslan Salakhutdinov, 5389–5400. PMLR. http://proceedings.mlr.
press/v97/recht19a.html.

Ripley, Brian D. 1996. Pattern Recognition and Neural Networks. Cambridge, England: Cambridge University
Press.

Rosenblatt, Frank. 1958. “The Perceptron: A Probablistic Model for Information Storage and Organization
in the Brain.” Psychological Review 65:386–408. https://doi.org/10.1037/h0042519.

Rosin, Christopher D., and Richard K. Belew. 1997. “New Methods for Competitive Coevolution.” Evolu-
tionary Computation 5:1–29. https://doi.org/10.1162/evco.1997.5.1.1.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986. “Learning Representations by
Back-Propagating Errors.” Nature 323:533–36. https://doi.org/10.1038/323533a0.

Schapire, Robert E., Yoav Freund, Peter Bartlett, and Wee Sun Lee. 1998. “Boosting the Margin: A New
Explanation for the Effectiveness of Voting Methods.” Annals of Statistics 26:1651–86. https://doi.org/10.
1214/aos/1024691352.

Shamir, Adi, Itay Safran, Eyal Ronen, and Orr Dunkelman. 2019. “A Simple Explanation for the Existence
of Adversarial Examples with Small Hamming Distance.” E-print, arxiv:1901.1086. http://arxiv.org/abs/
1901.1086.

Sherrington, Charles. 1906. The Integrative Action of the Nervous System. New Haven, Connecticut: Yale
University Press.

Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2013. “Intriguing Properties of Neural Networks.” In. http://arxiv.org/abs/1312.6199.

Taori, Rohan, Amog Kamsetty, Brenton Chu, and Nikita Vemuri. 2019. “Targeted Adversarial Examples for
Black Box Audio Systems.” In 2019 IEEE Security and Privacy Workshops (SPW), edited by Konrad Rieck,
Battista Biggio, and Nikolaos Vasiloglou, 15–20. IEEE. https://doi.org/10.1109/SPW.2019.00016.

31

https://doi.org/10.1109/JRPROC.1959.287207
https://proceedings.neurips.cc/paper/2019/hash/46f76a4bda9a9579eab38a8f6eabcda1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/46f76a4bda9a9579eab38a8f6eabcda1-Abstract.html
http://arxiv.org/abs/1301.3781
https://doi.org/10.1109/CVPR.2015.7298640
http://proceedings.mlr.press/v97/recht19a.html
http://proceedings.mlr.press/v97/recht19a.html
https://doi.org/10.1037/h0042519
https://doi.org/10.1162/evco.1997.5.1.1
https://doi.org/10.1038/323533a0
https://doi.org/10.1214/aos/1024691352
https://doi.org/10.1214/aos/1024691352
http://arxiv.org/abs/1901.1086
http://arxiv.org/abs/1901.1086
http://arxiv.org/abs/1312.6199
https://doi.org/10.1109/SPW.2019.00016

Thornton, Chris. 2000. Truth from Trash: How Learning Makes Sense. Cambridge, Massachusetts: MIT
Press.

Tishby, Naftali, Fernando C. Pereira, and William Bialek. 1999. “The Information Bottleneck Method.” In
Proceedings of the 37th Annual Allerton Conference on Communication, Control and Computing, edited by
B. Hajek and R. S. Sreenivas, 368–77. Urbana, Illinois: University of Illinois Press. http://arxiv.org/abs/
physics/0004057.

Wiener, Norbert. 1954. The Human Use of Human Beings: Cybernetics and Society. 2nd ed. Garden City,
New York: Doubleday.

———. 1964. God and Golem, Inc.: a Commentary on Certain Points Where Cybernetics Impinges Upon
Religion. Cambridge, Massachusetts: MIT Press.

Zech, John R., Marcus A. Badgeley, Manway Liu, Anthony B. Costa, Joseph J. Titano, and Eric K. Oermann.
2018. “Confounding Variables Can Degrade Generalization Performance of Radiological Deep Learning
Models.” PLoS Medicine 15:e1002683. https://doi.org/10.1371/journal.pmed.1002683.

Zhang, Chiyuan, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. 2021. “Understanding
Deep Learning (Still) Requires Rethinking Generalization.” Communications of the ACM 64:107–15. https:
//doi.org/10.1145/3446776.

Zhu, Xiaojin, Timothy Rogers, and Bryan Gibson. 2009. “Human Rademacher Complexity.” In Advances
in Neural Information Processing Systems 22, edited by Y. Bengio, D. Schuurmans, John Lafferty, C. K. I.
Williams, and A. Culotta, 2322–30. http://papers.nips.cc/paper/3771-human-rademacher-complexity.

32

http://arxiv.org/abs/physics/0004057
http://arxiv.org/abs/physics/0004057
https://doi.org/10.1371/journal.pmed.1002683
https://doi.org/10.1145/3446776
https://doi.org/10.1145/3446776
http://papers.nips.cc/paper/3771-human-rademacher-complexity

	From Logistic Regression to Multi-Layer Neural Networks
	Gradient Descent and Backpropagation
	Output-layer derivatives
	Hidden-layer derivatives
	The backpropagation trick

	How many layers? How many neurons per layer?
	Two-layer neural networks, a.k.a. ``perceptrons''
	Three-layer neural networks, a.k.a. multi-layer perceptrons
	Deep neural networks and deep learning
	Choice of number of layers and number of units per layer
	Beyond feed-forward networks

	Some history and some puzzles
	Three Interesting Aspects of Deep Learning
	Adversarial Examples
	Interpolation, and Generalizing Despite Memorizing
	Alien Cheaters, or, What the Frog's Eye Tells the Frog's Brain, or, What Is It Like to Be a Convolutional Neural Network?

	Further reading
	Exercises
	References

