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Abstract

Linear smoothing of spatial or spatio-temporal data rejoices in the

name of “kriging”, after the mining engineer D. G. Krige, who first real-

ized that the problem could be tackled by the method of least squares.

In these notes, I will try to explain what kriging is, how it works, and

why it works well (when it does). My aim here is to combine a somewhat

abstract mathematical approach with a minimum of modeling assump-

tions. I therefore begin with a general treatment of optimal linear pre-

diction with dependent variables, after which the specialization to spatial

or spatio-temporal prediction is basically trivial. The symmetry assump-

tions about covariance functions, beloved of geostatisticians, are treated

as ways of trading increased bias for reduced variance of estimation.

1 Least-Squares Optimal Linear Prediction

Suppose we have a scalar variable Y , and we wish to predict it from a vector of
covariates Z. The covariates may be observations of the same physical quantity
at other times or places, or variables of a di↵erent sort altogether.

We make three debatable assumptions.

1. We want a point prediction of Y , so our prediction m(Z) will be real-
valued.

2. We will measure the quality of the point prediction by expected squared
error, E

⇥
(Y �m(Z))2

⇤
.

3. We will limit ourselves to a�ne functions of Z, so m(Z) = a + b · Z for
some scalar a and vector of coe�cients b.

I shall return to these assumptions later.
We seek the optimal vector of coe�cients �.

(↵,�) = argmin
a,b

E
⇥
(Y � (a+ b · Z))2

⇤
(1)
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As usual, we find this by doing some algebra on the expected squared error, and
then some calculus.

E
⇥
(Y � (b · Z))2

⇤
= E

⇥
Y

2
⇤
+ a

2 + E
⇥
(b · Z)2

⇤
(2)

�2E [Y (b · Z)]� 2E [Y a] + 2E [ab · Z]

= E
⇥
Y

2
⇤
+ a

2 + b · E [Z ⌦ Z] b (3)

�2aE [Y ]� 2b · E [Y Z] + 2ab · E [Z]

Taking the gradients with respect to a and b, and setting it to zero at the
optimum,

�2E [Y ] + 2�E [Z] + 2↵ = 0 (4)

�2E [Y Z] + 2E [Z ⌦ Z]� + 2↵E [Z] = 0 (5)

↵ = E [Y ]� � · E [Z] (6)

E [Y Z]� ↵E [Z] = E [Z ⌦ Z]� (7)

E [Y Z]� (E [Y ]� � · E [Z])E [Z] = E [Z ⌦ Z]� (8)

Cov [Y, Z] = Var [Z]� (9)

� = (Var [Z])�1Cov [Y, Z] (10)

Let me repeat the key results from that.

� = (Var [Z])�1Cov [Y, Z] (11)

↵ = E [Y ]� � · E [Z] (12)

The coe�cients � depend on the covariance between Y and the di↵erent
components of Z, “discounted” by the covariances between those components
of Z. The intercept ↵ is a nuisance to make sure the expectation value comes
out right.

How bad is this optimal linear model? Let’s first ask for the bias, i.e., the
expected prediction error:

E [Y � (↵+ � · Z)] = E [Y � E [Y ] + � · E [Z]� � · Z] (13)

= E [Y � E [Y ]]� � · E [Z � E [Z]] (14)

= 0 (15)

It does not, of course, follow that E [Y |Z] = ↵+ � · Z; just that the deviations
from this linear model average out to zero, as Z varies randomly.

With this in hand, the expected squared error is just the variance of the
error:

Var [Y � (↵+ � · Z)] = Var [Y � � · Z] (16)

= Var [Y ] + Var [� · Z]� 2Cov [Y,� · Z] (17)

= Var [Y ] + � ·Var [Z]� � 2� · Cov [Y, Z] (18)

= Var [Y ] + Cov [Y, Z] ·Var [Z]�1 Cov [Y, Z] (19)

�2Cov [Y, Z] ·Var [Z]�1 Cov [Y, Z]

= Var [Y ]� Cov [Y, Z] ·Var [Z]�1 Cov [Y, Z] (20)
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1.1 Extension to Vectors

If Y is a vector, ↵ must also be a vector, and � must be a matrix. Fortunately,
if we use the squared (L2) error measure, we may simply find the optimal linear
predictor of each coordinate of Y separately.

Note that it may not be altogether reasonable to use the L2 error. If some
coordinates of Y are known (or believed) to have larger variance, we should,
perhaps, not expend so much e↵ort in trying to predict them. Similarly, if some
are correlated, this should be discounted when adding up our prediction error.
A reasonable loss function might be

E [(Y �m(Z)) · ⌦(Y �m(Z))] (21)

where ⌦ might be the inverse covariance matrix of Y . This gives a generalized
least squares problem, which also has an analytical solution (Exercise 4).

1.2 Estimation

Given consistent estimators of E [Y ], E [Z], Var [Z] and Cov [Y, Z], consistent
estimators of ↵ and � follow by the plug-in principle.

If multiple observations are available, one can also employ the method of least
squares, which leads to plugging in the sample versions of all the expectations
and covariances. If observations are uncorrelated with each other, the sample
versions are consistent estimators.

1.3 Stronger Probabilistic Assumptions

The three main assumptions — point predictions, squared error, and linear
predictors — are really more design choices than assumptions. We are always
free to make them; the results might be undesirable in other respects. The only
probabilistic assumptions were that all the first and second moments invoked in
the argument did, in fact, exist.

Some people are unhappy with making these design choices without further
justification. They prefer to add the probabilistic assumption that Y and Z are
jointly Gaussian, and to estimate by maximum likelihood. These assumptions
buy a number of things:

• Rather than just point predictions, we can predict conditional distribu-
tions.

• The least-squares estimate becomes e�cient.

• The linear model is correct, so the bias conditional on Z is zero.

• The variance conditional on Z becomes calculable (by the law of total
variance and the correctness of the linear model).

• There are straightforward sampling distributions for all estimators, with
consequent inferential statistics.
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The price, of course, is that the Gaussian assumption has to be correct in its
entirety.

Note that the correctness of the linear model is a strictly weaker assumption
than Gaussianity.

1.4 Nonlinearity?

As every school-child knows, if we do not limit ourselves to linear functions, the
optimal predictor of Y from Z is

r(z) = E [Y |Z = z]

or, at least, this minimizes the expected squared error. Again, no assumptions
of Gaussian distributions, additive and homoskedastic noise, etc., are needed to
derive this, just the existence of all the (conditional) moments invoked. To the
extent that r(z) 6= ↵+ � · z, the optimal linear predictor will be biased, though
(by Eq. 15) this bias must average out to 0 over z.

If we observe many (Y, Z) pairs, this may be estimated by any of the usual
non-parametric approaches. If we do not, estimation becomes substantially
trickier.

2 Application to Spatial and Spatio-Temporal
Data

Consider some field, or fields, spread out over space and time. Pick the value
of one field at one point1 This will play the role of Y . We observe the value of
some fields — the same one, or others — at various other points; the vector of
all our observations plays the role of Z.

Kriging is simply the linear prediction of Y , the value of one field at one
point, from Z, the value of various fields at various points. The optimal coe�-
cients thus depend on E [Y ], E [Z], Var [Z] and Cov [Y, Z]. Once they are found,
we may calculate both the optimal prediction, and the expected squared error
around it.

If we need to predict a field at many points at once, we turn Y into a vector,
as above. The same trick will work for predicting multiple fields, too.

2.1 Special Case: One Scalar Field

We consider a single, scalar-valued random field Y (x), where the coordinate vec-
tor xmay range over space or time or both. We have observations at coordinates
x1, x2, . . . xn

, and desire a prediction at the point x0. Thus

Y : Z :: Y (x0) : (Y (x1), Y (x2), . . . Y (x
n

)) (22)

1
I will use “point” indi↵erently to refer to a point in space, or to a point in space and time.
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What about the covariances? We define the covariance function

�(x, x0) = Cov [Y (x), Y (x0)] (23)

At this level of generality, this is an almost-arbitrary function of two arguments;
there is absolutely no need to presume that �(x, x0) = �(x � x

0
, 0) (stationar-

ity), or �(x, x0) = �(kx � x

0
k) (isotropy), or any separation along the di↵erent

coordinates of x, etc. This function does, however, have to be symmetric, and
any matrix of the form �(x

i

, x

j

) does need to be non-negative-definite.
With this function, we may say that

Var [Z]
ij

= �(x
i

, x

j

) (24)

while
Cov [Y, Z]

i

= �(x0, xi

) (25)

(See also Exercise 5.)
Given such a covariance function, we are not quite ready to calculate the

kriging coe�cients; we also need E [Z] and E [Y ]. We thus require a mean
function µ(x), so that E [Y ] = µ(x0) and E [Z] = (µ(x1), . . . µ(xn

)).
Once we have those functions, everything is a matter of conceptually-trivial

calculation.

2.2 Role of Symmetry Assumptions

It is common, in applications, to make various symmetry assumptions, such as
stationarity (of the covariance function), isotropy (ditto), separability (ditto), or
stationarity (of the mean function), linear trends (ditto), etc. The point of these
assumptions is not that kriging is somehow ill-defined or impossible without
them. If we have some reliable source of knowledge about the covariance and
mean functions, we’re fine.

One possible source of reliable knowledge would be multiple replications of
the same situation. If we had many independent replicas of the (Y, Z) pair, we
could calculate everything we needed from sample moments. (Indeed, indepen-
dence is more than is really needed; lack of correlation across replicates would
su�ce.) However, we often have only a single realization of the process, so we
cannot calculate any useful sample moments.

The point of the symmetry assumptions is that they say certain moments
are all equal, so we can pool data, within a single realization of the process, to
estimate them. If the covariance is isotropic,

�(x, x0) = �(kx� x

0
k) (26)

then we can pool all pairs of observations which are separated by a distance h

in order to estimate �(h); similarly for all the other symmetry assumptions.
Imposing a parametric form on � or µ, in addition to or instead of sym-

metries, is also about data pooling. If �(x, x0) = �0e
�kx�x

0k/� then we do not
need to estimate �(h) separately for every separation h; we can just estimate
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the (assumed-constant) variance �0 and the correlation length �. If those can
be consistently estimated, then, by the plug-in principle, we get covariances be-
tween the field at our observation points and the field at our prediction point,
from which the coe�cients follow.

Notice that if we have a parametric form for the functions � and µ, we can
estimate the parameters even when we don’t also assume symmetries.

There are some situations, primarily in physics when dealing with homo-
geneous substances, where there are genuine scientific reasons for symmetry
assumptions; maybe a somewhat wider range of situations where one might jus-
tify specific parametric functional forms. Otherwise, their use is really about
bias-variance trade-o↵s: by allowing for more data pooling, stronger assump-
tions lead to less variance in the estimates, at the cost of more bias when the
assumptions are false. (Note that it is senseless to try to assess the bias from
mis-specification from within a parametric model; from the premise that the
model is completely right, one concludes that the model is completely right.)

2.3 A Worked Example

Pretend we’re working with a single scalar field on the plane. Take µ(x) = 0,
and �(x, x0) = e

�kx�x

0k, so that we are working in units (for the field Y ) where
the variance is 1, and in units (for the coordinates x) where the correlation
length is also 1. We wish to predict the value of the field at the origin, and have
observations on a square grid, where the grid spacing is (by coincidence) also 1.
What are the coe�cients?

First o↵, ↵ = 0. (See Exercise 1.)
To find �, we will need to evaluate e�kx�x

0k for every pair of points involved
— distances between the origin and the measurement points, and between all
the measurement points. This means we will need the matrix of inter-point
distances, and so we might as well start with a matrix of coordinates.

# Create the 9x2 matrix of coordinates

# Slight notation clash to call the coordinates "x" and "y", but this

# will simplify later plotting

coords <- expand.grid(x=c(-1,0,1), y=c(-1,0,1))

# Keep track of which row is the origin (where we want to predict at)

predict.pt <- which(coords$x==0 & coords$y==0)

# Use the built-in function to create distance matrices

distances <- dist(coords) # Euclidean matrix by default

# That returns a special structure w/ just lower-triangular half

distances <- as.matrix(distances)

# Create the matrix of all covariances

covars <- exp(-distances)

# Break it into Cov(Y,Z) and Var(Z)

Cov.YZ <- covars[predict.pt, - predict.pt]

Var.Z <- covars[-predict.pt, -predict.pt]

# Find the coefficients

beta <- solve(Var.Z) %*% Cov.YZ
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# Print: for each coordinate, what is the coefficient?

signif(data.frame(coords[-predict.pt,], coef=beta),3)

## x y coef

## 1 -1 -1 0.0358

## 2 0 -1 0.2060

## 3 1 -1 0.0358

## 4 -1 0 0.2060

## 6 1 0 0.2060

## 7 -1 1 0.0358

## 8 0 1 0.2060

## 9 1 1 0.0358

Figure 1 shows this visually.
See Exercise 3 for more.
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plot(coords, xlab="longitude", ylab="latitude", type="n")

points(coords[predict.pt,], col="red")

points(coords[-predict.pt,], cex=10*sqrt(beta))

Figure 1: Kriging coe�cients for prediction at the origin (red) from eight points
in a square box around it; the assumed covariance function is exponential, and
the distance from the origin to the sides of the box is exactly the correlation
length. The area (not radius) of each point is proportional to its coe�cient.
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3 Further Reading

The viewpoint on optimal linear prediction taken in §1 is, or ought to be, a
standard one, though I think I find it more commonly in writings on stochastic
processes than in statistics proper. Certainly I learned it from Wiener (1949,
1961) and Grimmett and Stirzaker (1992) (also see Bartlett 1955). Wiener,
along with the independent parallel work of Kolmogorov (1941), was the first to
give a rigorous mathematical formulation of the general problem for dependent
random variables; thus with time series, the equivalent of the kriging predictor
is called the “Wiener filter” (or predictor).

As far as I can work out from the secondary literature — I admit I haven’t
gone back to the original papers for the history on this one — Krige, in the
1950s, came up with the idea of applying least squares over space, and this was
later properly math-ed up by others in the 1960s.

As Wiener (1949) emphasized, under stationarity assumptions, the covari-
ance function � can be deduced from the power spectrum, and vice versa. (This
equivalence is basically the “Wiener-Khinchin theorem”.) This is important,
because the power spectrum may be an easier object to estimate than the co-
variance function itself, and because it can sometimes simplify the calculation of
the optimal linear predictor. Many readers find Wiener (1949) notoriously hard
to follow; a more user-friendly presentation may be found in (among many other
places) Bartlett (1955). For an especially thorough treatment of the connection
between stationarity and Fourier representations, see Loève (1955).

On covariance functions in physics, see Chaikin and Lubensky (1995) or
Forster (1975); note (again) that these books treat homogeneous systems, which
are either carefully contrived or quite small. Symmetry in large systems with
heterogeneous parts usually requires the heterogeneity to be (in some sense)
su�ciently random, and then holds only approximately, on scales of length or
time large compared to the heterogeneities.

Exercises

1. Suppose that E [Y ] = E [Z] = ~0. Show that ↵ = 0. Suppose that E [Y ] = a,
E [Z] = a

~1, for some scalar a 6= 0. Is ↵ still zero? If not, what is it?

2. Can you re-write Eq. 20 to eliminate all appearances of Cov [Y, Z] in favor
of �?

3. Repeat the calculations from §2.3 under the following circumstances:

(a) Remove each prediction point in turn, and see how the coe�cients
of the remaining seven points vary. Add a ninth prediction point
mid-way between each pair of the original eight, and see how the
coe�cients vary.

(b) Repeat the whole calculation for prediction at the origin, with eight
predictor points in a diamond shape around the origin, each two steps

9



away along a square grid.

(c) Prediction at the origin with eight predictor points in a square around
the origin, the sides of the square two distance units away from the
origin.

(d) Prediction at the origin, with sixteen predictor points, each one unit
away from its neighbor, forming the boundary of a 4⇥4 square around
the origin.

(e) The same geometry as in 3d, but shrink all the disances towards the
origin by a factor of 1/2.

(f) Prediction at the origin with six predictor points equally spaced
around the unit circle.

(g) Prediction at the origin with six predictor points on the unit circle,
at angles 0�, 5�, 90�, 180�, 270�, 359� from the horizontal axis.

(h) Prediction at the origin with six predictor points equally spaced
around a circle of radius 1/3.

(i) Prediction at (0.3, 0.4), with the eight predictor points as in the
worked example.

(j) Prediction at (0.3, 0.4), with the six predictor points as in 3g.

(k) Prediction at the origin from four points uniformly distributed over
the rectangle [�2, 2]⇥ [�2, 2]; with six points; with eight; with 100.

In every case, you should create a visualization (or, if that works better
for you, a table) which lets you see at a glance the coe�cients associated
with each predictor point, and describe, in words, how they vary from one
condition to another.

4. Find the function m(Z) = ↵+ � ·Z which minimizes Eq. 21. Express the
argmin in terms of ⌦, E [Y ], E [Z], Var [Z] and Cov [Y, Z].

5. Modify the set-up of §2.1 slightly. Suppose that at x1, . . . xn

, we ob-
serve Z

i

= Y (x
i

) + ✏

i

, where the noise process (✏) has E [✏
i

|Z] = 0
and Cov [✏

i

, ✏

j

|Z] = �

2
i

�

ij

. Show that instead of Eq. 24, Var [Z]
ij

=

�(x
i

, x

j

) + �

ij

�

2
i

, but Eq. 25 doesn’t change. What happens if the ✏

i

are themselves correlated across points?

You may not assume that ✏ is jointly or even marginally Gaussian.
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