1 Random Graph Review

\(G(V, E), E \subset V \times V \), random graph. \(A_{ij} \sim \text{Bernoulli}(p) \) (Undirected).

- Phase transition to giant component at \(\lambda = p(n-1) = 1 \)
- Binomial (Poisson) Degree of Distribution.
- Diameter \(O(\log n) \) above \(\lambda = 1 \).
- Rare \(p^3 \) triangles, little transitivity. \(P(A_{ik} = 1|A_{ij} = 1, A_{jk} = 1) = p \)

2 Block Model

2.1 Definition

All nodes are divided into \(k \) blocks. \(Z_i \) is the block to which node \(i \) belongs.

\[Pr(A_{ij} = 1|Z_i = r, Z_j = s) = b_{rs} \] where \(b \) is a \(b \times b \) matrix (affinity matrix). All the edges are independent given \(Z \) (“block assignment”).

2.2 Comparison Between Random Graph and Block Model

<table>
<thead>
<tr>
<th>Random graph</th>
<th>Block model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edges are independent</td>
<td>Edges are independent given (Z)</td>
</tr>
<tr>
<td>All edges have equal probability</td>
<td>All edges between 2 blocks have equal probability (Within a block model it looks like a random graph)</td>
</tr>
<tr>
<td>All nodes have equal binomial degree distribution</td>
<td>All nodes in the same block have the same distribution (\sum \text{Binomial}(n_s - \delta_{rs}, b_{rs}))</td>
</tr>
<tr>
<td>Proportion of triangles (p^3), no-transitivity</td>
<td>Overall density (\sum_{r,s} b_{rs} \frac{n_r n_s}{n^2}). (P(A_{ik} = 1</td>
</tr>
<tr>
<td>Exponential family: (\hat{p} = \sum_{i,j} \frac{A_{ij}}{\binom{n}{2}})</td>
<td>Exponential family: (b_{rs} = \frac{e_{rs}}{n_r n_s})</td>
</tr>
</tbody>
</table>
2.3 Some Derivations for Table 1

Degree Distribution: say \(n_r \) nodes in block \(r(n = \sum_{r=1}^{k} n_r) \), degree distribution of a node in block \(r \) is \(\sum_{s=1}^{k} \text{Binomial}(n_s - \delta_{rs}, b_{rs}) \).

Baseline probability of an edge in a model:

\[
P_{\text{ef}} = Pr(A_{ij} = 1) = \sum_{r=1}^{k} \sum_{s=1}^{k} P(A_{ij}, Z_i = r, Z_j = s) = \sum_{r=1}^{k} \sum_{s=1}^{k} P(A_{ij}|Z_i = r, Z_j = s)P(Z_i = r, Z_j = s)
\]

\[
= \sum_{r=1}^{k} \sum_{s=1}^{k} b_{rs}Pr(Z_i = r, Z_j = s) = \sum_{r=1}^{k} \sum_{s=1}^{k} b_{rs} \frac{n_r n_s}{n^2}
\]

Probability of completing a triangle:

\[
P(A_{ik} = 1|A_{ij} = 1, A_{jk} = 1) = \sum_{r,s,q} \Pr(Z_i = r, Z_j = s, Z_k = q|A_{ij} = 1, A_{jk} = 1)
\]

\[
= \sum_{r,s,q} \Pr(A_{ik} = 1, Z_i = r, Z_j = s, Z_k = q|A_{ij} = 1, A_{jk} = 1)
\]

\[
= \sum_{r,s,q} \Pr(A_{ik} = 1|Z_i = r, Z_j = s, Z_k = q, A_{ij} = 1, A_{jk} = 1)Pr(Z_i = r, Z_j = s, Z_k = q|A_{ij} = 1, A_{jk} = 1)
\]

\[
= \sum_{r,s,q} \Pr(A_{ik} = 1|Z_i = r, Z_k = q)Pr(Z_i = r, Z_j = s, Z_k = q|A_{ij} = 1, A_{jk} = 1)
\]

\[
= \sum_{r,s,q} b_{rq}Pr(Z_i = r, Z_j = s, Z_k = q|A_{ij} = 1, A_{jk} = 1)
\]

Likelihood: firstly notice that \(L = \prod_{i,j} b_{Z_i Z_j}^{A_{ij}}(1 - b_{Z_i Z_j})^{1-A_{ij}}. \) We assume we have \(n_r \) nodes in block \(r \) and \(e_{rs} \) edges between block \(r \) and block \(s \)

\[
l = \log(L) = \sum_{ij} A_{ij} \log b_{Z_i Z_j} + (1 - A_{ij}) \log (1 - b_{Z_i Z_j})
\]

\[
= \sum_{r=1}^{k} \sum_{s=1}^{k} e_{rs} \log(b_{rs}) + (n_r n_s - e_{rs} \logit(b_{rs}))
\]

\[
= \sum_{r,s} n_r n_s \log(1 - b_{rs}) + e_{rs} \logit(b_{rs})
\]

We can show \(b_{rs}^* = \frac{e_{rs}}{n_r n_s}. \)

3 Routes to the Block Model

- Give a partition into blocks, most random graphs with observed edges and densities.
Exponential families at MLE. \iff Most random distributions where observed statistics match expectations.

(maximum entropy distribution)
(distributions closest to homogeneous random graphs)

- Graph theory: Szemeredi regularity lemma. For any graph G of n nodes and any ϵ_j, we can divide the nodes into $s(n, \epsilon)$ blocks, and the edge counts come within ϵ of expectations for a k-block model.

- Third source for block model: role model in sociology, regular equivalence. Two models are structurally equivalent when they have the same neighbors. This can be illustrated in Fig. 1.

Figure 1: The left figure a can be represented by the right figure b under the regular equivalence principle.

4 Discussion

For what value of parameters are all $E(e_{rs})$ equal to observed e_{rs}? Maximum Entropy Problem: Given observed statistics $t_1, t_2, ..., t_p$, find the distribution where $E(T_i) = t_i$ and entropy is maximized. The solution is always $p \propto e^{\sum_{i=1}^{n} \theta_i t_i(x)}$ with θ set to MLE.