5.1 Review

We begin by quickly re-defining some concepts from previous lectures. Specify a motif f on k nodes, and a graph g on n nodes.

Definition 5.1 (Homomorphism Density) The **homomorphism density** of f into g is

$$t(f, g) = \frac{\text{Hom}(f, g)}{n^k}$$ \hspace{1cm} (5.1)

where $\text{Hom}(f, g)$ counts the number of homomorphisms from f into g.

Recall that for any graph g with corresponding adjacency matrix a, we can define a function $w_g : [0, 1] \times [0, 1] \rightarrow \{0, 1\}$ as follows:

$$w_g(u, v) = a_{[nu][nv]}$$ \hspace{1cm} (5.2)

We can think of w_g as taking the adjacency matrix and squashing it into the unit square, and sampling a graph from w_g is the same as picking nodes from g, then connecting them if there is an edge between them in g. This leads to a second (and equivalent) definition for $t(f, g)$,

$$t(f, g) = \int_{[0,1]^k} \prod_{(i,j) \in E(f)} w_g(u_i, u_j) du_1 \ldots du_k$$ \hspace{1cm} (5.3)

Recall the injective homomorphism density $t_{inj}(f, g) = \mathbb{P}(f \preceq G[k])$ where $G[k]$ is the induced subgraph we get by randomly sampling k nodes from g. The following proposition bounds the difference between t and t_{inj}.

Proposition 5.2

$$|t(f, g) - t_{inj}(f, g)| \leq \frac{k^2}{2n}$$ \hspace{1cm} (5.4)
Notice that we can define the homomorphism density for a function \(w : [0, 1] \times [0, 1] \to [0, 1] \) in a similar manner as we did for a graph.

\[
t(f, w) = \int_{[0,1]^k} \prod_{(i,j) \in E(f)} w(u_i, u_j) du_1 ... du_k
\]

(5.5)

and so \(t(f, g) = t(f, w_g) \). This allows us to talk about the convergence of graph sequences to a graphon function.

Definition 5.3 (Convergence of Graph Sequences) A sequence \(g_1, g_2, ..., g_m, ... \) converges when \(\forall f, t(f, g_m) \to t(f, w) \). The sequence converges to \(w \) when \(\forall f, t(f, g_m) \to t(f, w) \) (5.6)

Now we are ready to define a graphon.

Definition 5.4 (Graphon) Two functions \(w_1 \) and \(w_2 \) are equivalent iff \(\forall f, t(f, w_1) = t(f, w_2) \). An equivalence class of \(w \)s is called a graphon.

For any graphon function, the \(w \)-random graph on \(n \) nodes, \(G_n(w) \), is the Conditionally Independent Dyad model with \(w \) as the edge probability function.

Finally, we come to the main question for today: does \(G_n(w) \to w \) in any useful sense? Recall that we might be interested in any of the four main types of convergence for random quantities: convergence in probability, almost sure convergence, convergence in distribution, and convergence in squared mean. We will focus on the first two today.

5.2 Convergence of \(w \)-random graphs

Our first theorem will cover convergence in probability of \(G_n(w) \) to \(w \).

Theorem 5.5 For any motif \(f \) and any \(\epsilon \in (0, 1) \),

\[
Pr(|t(f, G_n(w)) - t(f, w)| > \epsilon) \leq 2e^{-\frac{\epsilon^2 n}{k^2}}
\]

(5.7)

Proof: To begin with, recall that one way to generate \(G_n(w) \) is to say that \((i, j) \) appears in \(G_n(w) \) if \(\xi_{ij} > w(U_i, U_j) \) where the \(\xi_{ij} \) and \(U_i \) are independent draws from \(U(0, 1) \). Let \(Z_i = \{U_i, \xi_{1,i}, ..., \xi_{i-1,i}\} \). Then, changing \(Z_i \) changes the value of \(t(f, G_n(w)) \) by at most \(\frac{k}{n} \). We can therefore use the Bounded Difference Inequality and say

\[
P \left(|t(f, G_n(w)) - E[t(f, G_n(w))]| > \epsilon \right) \leq 2 \exp \left\{ -\frac{\epsilon^2 n}{k^2} \right\}
\]

(5.8)
We then need to bound \(E[t(f,G_n(w))] - t(f,w) \). To begin with, we use the previously stated fact that for any graph \(g \) on \(n \) nodes,

\[
|t(f,g) - t_{inj}(f,g)| \leq \frac{k^2}{2n} \tag{5.9}
\]

Also,

\[
E[t_{inj}(f,G_n(w))] = t(f,w) \tag{5.10}
\]

Putting these together yields

\[
|E[t(f,G_n(w))] - t(f,w)| \leq \frac{k^2}{2n} \tag{5.11}
\]

Moreover, we have that if \(2 \exp\{-\frac{\epsilon^2 n}{4k^2}\} \leq 1 \) and \(\epsilon \in (0,1) \), then

\[
\frac{k^2}{2n} \leq \frac{\epsilon^2}{4\log 2} \leq \frac{\epsilon}{2} \tag{5.12}
\]

Thus, we have that \(|E[t(f,G_n(w))] - t(f,w)| \leq \frac{\epsilon}{2} \), and by extension,

\[
P(|t(f,G_n(w)) - t(f,w)| > \epsilon) \leq P\left(|t(f,G_n(w)) - E[t(f,G_n(w))]| > \frac{\epsilon}{2}\right) \tag{5.13}
\]

\[
\leq 2 \exp\{-\frac{\epsilon^2 n}{4k^2}\} \tag{5.14}
\]

A simple consequence of this theorem is that \(\forall f, t(f,G_n(w)) \xrightarrow{p} t(f,w) \). However, we can show something even stronger.

Corollary 5.6 For each \(f, t(f,G_n(w)) \xrightarrow{a.s} t(f,w) \).

Proof: Since the previous deviation inequality decreases exponentially in \(n \), we have that \(\forall \epsilon > 0 \)

\[
\sum_{n=1}^{\infty} P(|t(f,G_n(w)) - t(f,w)| > \epsilon) < \infty \tag{5.15}
\]

so by the Borel-Cantelli Lemma, we have almost sure convergence. In particular, the Borel-Cantelli Lemma gives us
\[P \left(\cap_{m=0}^{\infty} \left\{ |t(f,G_n(w)) - t(f,w)| > 2^{-m}\text{f.o.} \right\} \right) = 1 \]
\[(5.16) \]

which is equivalent to \(P \left(t(f,G_n(w)) \to t(f,w) \right) = 1. \)

This leads us to a strong Law of Large Numbers for graphs.

Theorem 5.7 (LLN for graphs) \(G_n(w) \overset{a.s.}{\to} w \)

Proof: We want to show that \(P (\forall f, t(f,G_n(w)) \to t(f,w)) = 1. \) Let \(B_k = \{ f : |V(f)| = k, t(f,G_n(w)) \not\to t(f,w) \} \). Then, \(\forall k > 0, P(B_k) = 0, \) and there are countably many \(B_k, \) so \(P(\cup_{k=1}^{\infty} B_k) = 0. \)

\[\square \]