Lecture 10 Notes

Agenda: more nonparametric estimation
- recap from end of last time
- convergence rate
- localizing functionals
- implementation

Recap:

graphon function: \(\omega \)
node locations \(U_i \sim \text{Uniform}[0,1] \)
Ball \(B(x, y, h) := \{ (a, b) \in [0,1]^2 : |x - a| < h \text{ and } |y - b| < h \} \)

Method for approximating \(\omega \)
1. Pretend for now we observe all \(U \)'s
2. Take all \((u_i, u_j) \in B(x, y, h)\)
3. Average \(A_{ij} \) for those dyads
4. Return as \(\hat{\omega}(x, y) \)

recall:

\[
P(A_{ij} = 1 \mid u_i = x, u_j = y) = \omega(x, y) = \mathbb{E}[A_{ij} \mid u_i = x, u_j = y] \quad (1)
\]

If \(w \) is smooth, then \(\omega(x + \epsilon, y + \nu) \) is close to \((x, y) \).
So averaging \(A_{ij} \) from points near \((x, y)\) should approximate \(\omega(x, y) \)

\[
\langle A; B(x, y, z) \rangle = \frac{1}{n^2|B|} \sum_{(i,j) \in B(x,y,h)} A_{ij} \quad (2)
\]
\[
\mathbb{E}[A; B] = \frac{1}{n^2|B|} \sum_{(i,j) \in B} \mathbb{E}[A_{ij}] = \frac{1}{n^2|B|} \sum_{(i,j) \in B} \omega(u_i, u_j) \quad (3)
\]

Assume that \(\omega \) is a smooth function - specifically that

\[
\frac{1}{|B|} \int_{B(x,y,h)} |\omega(u, v) - \omega(x, y)| \, du \, dv \leq kh^\gamma \quad (4)
\]

for some \(k, \gamma \in \mathbb{R}^+ \)

\[
\frac{1}{n^2|B|} \sum_{(i,j) \in B} \omega(u_i, u_j) \overset{\text{almost surely}}{\to} \frac{1}{|B|} \int_{B(x,y,h)} \omega(u, v) \, du \, dv = \mathbb{E}(x, y, h) \quad (5)
\]
As a consequence of this assumption
\[|\varphi(x, y, h) - \omega(x, y)| \leq O(h^\gamma) \] (6)

What about variance?
\[\text{Var}[\langle A; B \rangle] = \text{Var}[\langle \omega; B \rangle + \langle \epsilon; B \rangle] \] (7)
where:
\[\epsilon_{ij} = A_{ij} - \omega(u_i, u_j) \] (8)

\(\epsilon_{ij} \) is dependent on \(\omega(u_i, u_j) \) but also has conditional mean 0
\(A_{ij} \in \{0, 1\} \)
\(\omega(u_i, u_j) \in (0, 1) \)

Therefore \(\epsilon_{ij} \) is uncorrelated with \(\omega(u_i, u_j) \)

Recall: for random variables \(X \) and \(Y \)...
\[\mathbb{C}[X, Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] \]
\[= \mathbb{E}[XE[Y|X]] - \mathbb{E}[X]\mathbb{E}[Y|X]] \] (9)

Also:
\[\text{Var}[X + Y] = \text{Var}[X] + \text{Var}[Y] + 2\text{Cov}[X, Y] \] (10)

So:
\[\text{Var}[\langle A; B \rangle] = \text{Var}[\langle \omega; B \rangle] + \text{Var}[\langle \epsilon; B \rangle] \] (11)

Now we take a closer look at (11).
Since \(\epsilon_{ij} \) is uncorrelated with \(\epsilon_{kl} \), it follows that
\[\text{Var}[\langle \epsilon_{ij}; B \rangle] = O \left(\frac{1}{n^2 h^2} \right) \] (12)

And (since \(\text{Var}[\text{Bern}] = p(1 - p) \)) we have
\[\text{Var}[\epsilon_{ij}] \leq \frac{1}{4} \] (13)

\(\text{Var}[\langle \omega; B \rangle] \) is much more annoying
\[\text{Var}[\frac{1}{n^2 |B|} \sum_{(i,j) \in B} \omega(u_i, u_j)] \]
\(\omega(u_i, u_j) \) is correlated with \(\omega(u_i, u_k) \)

There are two approaches for us to work with
Approach 1: bound \(\text{Cov}[\omega(u_i, u_j), \omega(u_i, u_k)] \) using smoothness and finite size \(h \)
Approach 2: steal result on generalized U-statistics
U-Statistics

Given independent random variables X_1, X_2, \ldots, X_n and a symmetric function ψ of two args, a U-Statistic is

$$\frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \psi(X_i, X_j) = U_\psi$$ \hspace{1cm} (14)

All terms in here are dependent on one another (for terms that share the same X_i)

general results on variance of U_ψ based on:

$$\text{Var}[\psi(X_1, X_2)]$$ \hspace{1cm} (15)

$$\text{Var}[\mathbb{E}[\psi(X_1, X_2)|X_1]]$$ \hspace{1cm} (16)

(15) Variance of individual summands
(16) Covariance between summands

Generalized U-statistic: Given:

$$X_1, \ldots, X_n \overset{i.i.d.}{\sim} Y_1, \ldots, Y_n \overset{i.i.d.}{\sim} U$$

$$U_\psi = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} \psi(X_i, Y_j)$$ \hspace{1cm} (17)

(note that Ys must have different distribution than Xs)

Generalized results on $\text{Var}[U_\psi]$ in terms of:

$\text{Var}[\psi(X_1, X_2)] \quad Y \sim \text{vertical coordinates}$

$\text{Var}[\mathbb{E}[\psi(X,Y)|X]] \quad X \sim \text{U-coordinates with horizontal limit of box}$

$\text{Var}[\mathbb{E}[\psi(X,Y)|Y]] \quad \psi \sim \omega$

Use smoothness of ω function

$$\text{Var}[\langle \omega; B \rangle] = O\left(\frac{1}{nh}\right)$$ \hspace{1cm} (18)

$$\text{Var}[\langle \epsilon; B \rangle] = \text{Var}[\langle \epsilon; B \rangle] + \text{Var}[\langle \omega; B \rangle]$$

$$= O \left(\frac{1}{n^2 h^2} \right) + O \left(\frac{1}{nh} \right)$$ \hspace{1cm} (19)

$$= O \left(\frac{1}{nh} \right)$$

$$\mathbb{E}[\langle A; B \rangle] = \omega(x, y, h)$$

$$= \omega(x, y) + O(h^\gamma)$$ \hspace{1cm} (20)
So we have the *Mean-Squared Error (MSE)* as $[\text{bias}]^2 + [\text{variance}]$

$$\mathbb{E}[(\langle A; B \rangle - \omega(x, y))^2] = O(h^{2\gamma}) + O\left(\frac{1}{nh}\right)$$

(21)

Pick h that minimizes this.

note: there is a trade-off between bias & variance

$$O \left(h^{2\gamma-1} \right) + O \left(\frac{-1}{n^2 h^2} \right) = O$$

$$h^{2\gamma-1} = \frac{1}{nh^2}$$

$$h^{2\gamma+1} = \frac{1}{n}$$

$$h = n^{\frac{1}{2\gamma+1}}$$

(22)

And thus:

$$MSE = O \left(n^{-\frac{1}{2\gamma+1}} \right) + O \left(\frac{1}{n \cdot n^{-\frac{1}{2\gamma+1}}} \right)$$

$$= O \left(n^{-\frac{2\gamma}{2\gamma+1}} \right)$$

(23)

Recall that for parametric estimates we only get $O(n^{-1})$

Topology Fact:

$\dim(X) = \dim(Y) \iff \exists \phi : X \to Y \text{ s.t. } \phi \text{ is continuous and } \exists \phi^{-1} \text{ s.t. } \phi^{-1} \text{ is also continuous.}$

Graphon Fact: Any CID model is equivalent to a ω-function $[0, 1]^2 \to [0, 1]$ i.e. $P(x_i, x_j) = \omega(\phi(u_i), \phi(u_j))$ for some $\phi : X \to [0, 1]$

Suppose X is \mathbb{R}^2 or \mathbb{R}^3 as in Continuous Latent Space Models (CLSM). There cannot exist a homeomorphism between \mathbb{R}^2 and $[0, 1]$.

$\therefore \phi$ in $P(x_i, x_j) = \omega(\phi(u_i), \phi(u_j))$ must not be smooth.

\therefore if P is smooth, ϕ is not smooth, ω must not be smooth.

Localizing Functionals and Implementation

These topics will be covered in Lecture 11.