
Midterm Examination

36-350, Fall 2011

Instructions: Provide all answers in your bluebook. Only work in the
bluebook will be graded. Clearly indicate which problem each answer goes
with.

There are 100 points in all.
Problems 1–8 are multiple choice and each worth 5 points. Problems 9 and

10 need longer answers and are worth 25 and 35 points. Leave yourself enough
time to do the longer problems.

The exam will be curved.
Explain your reasoning when possible, even for the multiple choice questions;

this will help us to give partial credit.

1

1. (5 points) What comes next?

> all.cases <- c()
> case.1 <- c(1610,4)
> rbind(all.cases,case.1)
> case.2 <- c(1877,2)
> rbind(all.cases,case.2)
> all.cases

(a) [,1] [,2]
[1,] 1610 1877
[2,] 4 2

(b) [1] 1877 2

(c) NULL

(d) [1] 1610 4

(e) [,1] [,2]
[1,] 1610 4
[2,] 1877 2

2

2. (5 points) m and n are two square matrices of the same size. Consider the
following:

r <- matrix(rep(0,times=ncol(m)*nrow(m)),nrow=ncol(m),ncol=ncol(m))
for (i in 1:ncol(m)) {
for (j in 1:ncol(m)) {
for (k in 1:ncol(n)) {
r[i,j] <- r[i,j] + m[i,k]*n[k,j]

}
}

}

What is it equivalent to?

(a) r <- m %*% n

(b) r <- colSums(m*n)

(c) r <- which.min(n*m)

(d) r <- n*m

(e) None of the above; it contains a bug.

3

3. (5 points) What comes next?

g <- function(y) { return(y*(2^(-y))) }
f <- function(x) { return(g(x^2)) }
y <- 3
x <- 2
f(1)

(a) 0.375, because that is 3× 2−3

(b) 0.5, because that is 1× 2−1

(c) An error message about the value of y being unknown.

(d) 0.25, because that is (22)× 2−(22)

(e) 0.5, because that is 2× 2−2

4

4. (5 points) Are these equivalent?

A: > s <- 2
> curve(function(x) { return(log((0.5/pi)*exp(-0.5*x^2/s^2))) },

from=-1,to=1)

B: > s <- 2
> curve(log((0.5/pi)*exp(-0.5*x^2/s^2)),

from=-1,to=1)

Choose the most accurate answer.

(a) Yes, they both produce a plot of a parabola.

(b) Yes, they both produce a plot of a bell curve.

(c) No, they both result in an error message about s.

(d) No, A results in an error message about expr.

(e) No, B results in an error message about expr.

5

5. (5 points) Consider the following function, which is designed to check what
fraction of a sequence of measurements are between tolerance limits:

prop.within.limits <- function(x,upper.limits,lower.limits) {
stopifnot(length(x)==length(upper.limits),length(x)==length(lower.limits))
in.limits <- (x < upper.limits) && (x > lower.limits)
return(sum(in.limits)/length(x))

}

What does

prop.within.limits(c(10,32),c(9,50),c(5,20))

return?

(a) 0, and this is the right answer.

(b) 0, but the right answer is 0.5.

(c) 0.5, and this is the right answer.

(d) 0.5, but the right answer is 0.

(e) [1] FALSE TRUE

6

6. (5 points) What comes next?

> x <- 10
> f <- function(x, y = x * 2) { x + y }
> f(2)

(a) [1] 2

(b) [1] 6

(c) [1] 22

(d) Error in x + y : ’y’ is missing

7

7. (5 points) The function mypower() calculates the power of some hypothesis
test with a fixed level (alpha) for different sample sizes (n) in order to
investigate the cost/benefit trade-off of increasing sample size. Below is
an attempt to make a plot of the power for a few different values of sample
size. The function mypower() works perfectly, however the code that
comes after it does not. Why?

mypower <- function(alpha = .05, n) {
OMITTED

}

mysamplesizes <- c(10, 20, 40, 100, 200, 400, 1000)
y <- sapply(mysamplesizes, mypower)
plot(x = mysamplesizes, y = y)

(a) The lengths of mysamplesizes and y are not the same.

(b) mypower() does not work when its argument n is a vector.

(c) y is actually a list, not a numeric vector as intended.

(d) The call to sapply is incorrect because n is not specified.

8

8. (5 points) The function foo(x,y) takes two vectors as arguments. What
should be in the line that is marked below?

foo <- function(x, y) {
WHAT GOES HERE?
for(i in 1:length(x)) {
for(j in 1:length(y)) {
result[i, j] <- g(x[i], y[j])

}
}
return(result)

}

(a) result <- matrix()

(b) result <- matrix(nrow = length(x), ncol = length(y))

(c) result <- matrix(nrow = length(y), ncol = length(x))

(d) Nothing.

9

9. The Jackknife in General (25 points total) Recall that the jackknife is
a way of approximating the standard error seθ̂, or variance se2

θ̂
, of an

estimate θ̂ of some quantity or parameter θ. It works by going over the
data set, deleting the ith observation, repeating the estimate to get θ̂−i,
and then scaling up the variance of the θ̂−i to find se2

θ̂
.

This code is supposed to get a jackknife standard error for any estimation
function which takes a data vector and returns a vector (of fixed length)
of estimated quantities.

jackknife <- function(estimator,data,se=TRUE) { # 1
n <- length(data) # 2
jackknifed.ests <- c() # 3
for (omitted in 1:n) { # 4
jackknifed.ests <- cbind(jackknifed.ests, # 5
estimator(omit.one.case(data,omitted))) # 6

} # 7
variance.of.ests <- apply(jackknifed.ests,2,var) # 8
jackknifed.vars <- ((n-1)^2/n)*variance.of.ests # 9
return(if (se) { sqrt(jackknifed.vars)} else { jackknifed.vars }) # 10

} # 11
12

omit.one.case <- function(data,i) { # 13
return(data[-i]) # 14

} # 15

(Refer to code by line number as convenient.)

(a) (15 points) jackknife() contains a bug. Find it, explain why it is a
bug, and modify no more than two lines to fix it.

(b) (5 points) Once jackknife() is fixed, approximately what should
the result of this be?

jackknife(estimator=mean,data=rnorm(n=400,mean=7,sd=5))

(a) 5 (b) 1/4 (c) 7/4 (d) 1/80 (e) 1/16 (f) something else?

(c) (5 points) Why does the previous question only have an approximate
answer?

10

10. Tuning parameter selection by cross-validation (35 points total) In a pre-
dictive modeling problem we are given a vector x (the predictor variable)
and wish to predict the corresponding y (the response variable). These
problems usually involve a training data set that is composed of examples
of x and y pairs that go together. The goal is to use the training data to
fit a model that will be able to predict y from x in novel cases outside the
training data set. Many statistical procedures for doing this require the
user to choose a tuning parameter during the fitting stage. Here is one
example:

superpredictor <- function(x, y, tuning.param) { ... }

superpredictor() is a function that implements some statistical proce-
dure for fitting a predictive model. It takes 3 arguments: a matrix x
whose n rows correspond predictor variables, a vector y whose entries
are the corresponding n response variables, and a number tuning.param
that specifies how cautiously the procedure should fit the model. What
superpredictor() returns is a function which makes predictions on new
data.

Suppose the global environment contains the following 4 objects:

• x.train — numeric matrix with n rows,

• y.train — numeric vector of length n,

• x.test — numeric matrix with m rows, and

• y.test — numeric matrix of length m.

The following code snippet shows example usage for superpredictor()

f <- superpredictor(x = x.train, y = y.train,
tuning.param = 0.1)

y.hat1 <- f(x.train[1,])

f is the fitted predictor function. It takes a vector as its only argu-
ment. Here it is being used to make a prediction for the first row of
x.train. Calling superpredictor() with the same training data but
changing tuning.param changes the fitted prediction function (as in f
above). For example, f2 (and y.hat2) below will be different from f (and
y.hat1) above.

f2 <- superpredictor(x = x.train, y = y.train,
tuning.param = 0.2)

y.hat2 <- f2(x.train[1,])

Your goal over the next few subproblems is to write a function to help
find a good value for tuning.param.

11

(a) (10 points) We measure the quality of the model by having f make
predictions for all of x.test and then computing the mean squared
error (MSE) between the predictions and y.test. f will be a function
returned by superpredictor(). You need to write code to compute
predictions for each row of x. Fill-in the blank below.

mse <- function(f, x = x.test, y = y.test) {

FILL-IN HERE

return(mean((y - y.hat)^2))
}

(b) (10 points) You have seen two examples of using superpredictor()
to fit a predictor function with two different values of the tuning
parameters. Now we want to use the same training data to fit
predictor functions over a range of values for the tuning parameter
tuning.param. The function below should return a list of predictors
each fit by calling superpredictor() with a corresponding value for
tuning.param given by an entry of tp. Fill-in the blank below.

fitmany <- function(x = x.train, y = y.train,
tp = seq(from=0, to=100, by=0.1)) {

FILL-IN HERE

}

(c) (10 points) We now have the main ingredients for writing a simple
cross-validation procedure for selecting a good value of the tuning
parameter. The function below, which you need to fill-in, should
return a list with the following three components:

• $tuning.param — a vector of values for the tuning parameter
• $mse — a vector of the corresponding mean squared errors
• $f.best — the predictor function with the smallest MSE.

Assume that the functions mse() and fitmany() from the preceding
parts are declared correctly within the supersimplecv() function
below. Note that the default values for their arguments have been
removed. You should only call these functions and the built-in R
functions.

supersimplecv <- function(x.train, y.train, x.test, y.test,
tuning.param = seq(from=0, to=100, by=0.1)) {

mse <- function(f, x, y) {
OMITTED

}

12

fitmany <- function(x, y, tp) {
OMITTED

}

FILL-IN HERE

}

(d) (5 points) Fill-in code to take the results of supersimplecv() and
fit a predictor function by calling superpredictor() with ALL of
the data (x.train, y.train, x.test, and y.test) and the the best
value of tuning.param found by supersimplecv().

cv <- supersimplecv(x.train, y.train, x.test, y.test)

FILL-IN HERE

13

