
Final Project

36-350, Fall 2011

You will work on projects in groups of 3. You will upload a text file to Black-
board with your ranking of the following projects, and the instructors will assign
you to groups. You must give us your rankings by Wednesday, 9 November at
11:59 pm. (If you do not tell us your preferences, we will assign preferences
to you.) There will be three components to the project: an oral presentation
during the last week of class (approximately 15 minutes in duration), a written
report describing the problem and what you did to solve it, and (documented)
code.

1. Drunken chessmaster Imagine playing chess with only one piece (a knight,
rook, queen, or bishop, . . . ) by always selecting your next move at random
from all possible legal moves. This is something a drunken chessmaster
might do. How many moves would it take for your piece to return to
where it started? Does it matter where you start? If you play this way
for a very long time and then stop which square will you most likely land
on? You will write code to simulate this process, to estimate averages and
distributions of answers to these questions and others like it.

2. Stepwise model selection In regression problems that often come up in data
mining, there are very many covariates X1, . . . , Xp that are potentially
related with the response Y . An important problem is determining which
subset of variables are the best predictors of Y . When p is large, using
all p variables may be a bad idea; it is also computationally intractable to
try every possible subset of the p-variables. Instead one may try fitting a
sequence of models in a greedy manner by starting from 0 variables and
then adding one variable at a time by choosing the “best” variable at each
step according to some criterion. Alternatively, start with a full model
using all p variables and then remove the “worst” variable at each step.
We will provide you with data consisting of a vector of responses Y and
a matrix of variables X. You will write code to fit a sequence of linear
regression models using ordinary least squares and some criterion from
adding/removing variables to the model. Your code will also perform
cross-validation to estimate the mean squared prediction error of each
candidate model and to choose the best one.

3. Word frequency A classical claim in quantitative linguistics is Zipf’s law,
which says that the number of words from the dictionary which appear
k or more times in a large text or collection of texts is proportional to

1



k−α: a few words appear a very large number of times, a vast number
of words appear only once. We will provide you with a canonical text in
electronic form; you will write code to estimate α from the text, plot the
fitted distribution and the data, and assess uncertainty and goodness of
fit.

4. Document classification We will provide you with news stories from the
New York Times with known subject classification. You will write code
to extract the text, turn the word frequencies into features, and automat-
ically sort the text into categories, using regression-like methods. We will
provide texts for two groups, one learning to discriminate articles about
art from articles about music, the other learning to discriminate news
stories from editorials.

5. Markov chain language models A simple statistical model of language is
that words follow a Markov chain, with the next word being independent
of earlier words given the latest word. You will write code to fit this model
to a collection of documents, to simulate new text from it, and to compare
it to a second-order Markov chain, where the next word is independent of
earlier words given the latest two words.

6. Markov chain genetic models DNA consists of a series of distinct “base”
molecules, conventionally written A, C, G, T. The sequence of bases spec-
ifies the genetic information used to grow organisms, such as yourselves.
A simple statistical model of DNA is that bases follow a Markov chain,
with the next base being independent of earlier bases given the latest base.
You will write code to fit this model to the genome of a real organism (the
social slime mold Dictyostelium discoideum), to simulate new DNA from
it, and to compare it to kth-order Markov chains, where the next base is
independent of earlier bases given the latest k bases.

2


