
Defining and calling functions
The Interfaces; first look at scope

Detailed Example

Statistical Computing (36-350)
Lecture 4: Writing and Calling Functions

Cosma Shalizi and Vincent Vu

12 September 2011

36-350 Lecture 3

Defining and calling functions
The Interfaces; first look at scope

Detailed Example

Agenda

Defining functions: Tying related commands into bundles

Interfaces: Controlling what the function can see and do

Example: Improving the lab’s parameter estimation

Absolutely Essential Reading for Friday: Sec. 4.2 of
the textbook
Merely Useful Reading: Chapter 3
Code from this lecture: At class website, with comments

36-350 Lecture 3

Defining and calling functions
The Interfaces; first look at scope

Detailed Example

Why Functions?

Data structures tie related values into one object
Functions tie related commands into one object
For example:

"Robust" loss function, for outlier-resistant regression

Inputs: vector of numbers (x)

Outputs: vector with x^2 for small entries, |x| for large ones

psi.1 <- function(x) {

psi <- ifelse(x^2 > 1, abs(x), x^2)

return(psi)

}

Our functions get used just like the built-in ones:

> z <- c(-0.5,-5,0.9,9)

> psi.1(z)

[1] 0.25 5.00 0.81 9.00

36-350 Lecture 3

Defining and calling functions
The Interfaces; first look at scope

Detailed Example

Go back to the declaration and look at the parts:

"Robust" loss function, for outlier-resistant regression

Inputs: vector of numbers (x)

Outputs: vector with x^2 for small entries, |x| for large ones

psi.1 <- function(x) {

psi <- ifelse(x^2 > 1, abs(x), x^2)

return(psi)

}

Interfaces: the inputs or arguments; the outputs or return
value
Calls other functions ifelse(), abs(), and operators ^ and >
could also call other functions we’ve written

return() says what the output is
alternately, return the last evaluation; I like explicit returns better

Comments: Not required by R, but a Very Good Idea
One-line description of purpose; listing of arguments; listing of
outputs

36-350 Lecture 3

Defining and calling functions
The Interfaces; first look at scope

Detailed Example

Named and default arguments

"Robust" loss function, for outlier-resistant regression

Inputs: vector of numbers (x), scale for crossover (c)

Outputs: vector with x^2 for small entries, c|x| for large ones

psi.2 <- function(x,c=1) {

psi <- ifelse(x^2 > c^2, c*abs(x), x^2)

return(psi)

}

> identical(psi.1(z), psi.2(z,c=1))

[1] TRUE

Default values get used if names are missing:

> identical(psi.2(z,c=1), psi.2(z))

[1] TRUE

Named arguments can go in any order when explicitly tagged:

> identical(psi.2(x=z,c=2), psi.2(c=2,x=z))

[1] TRUE

36-350 Lecture 3

Defining and calling functions
The Interfaces; first look at scope

Detailed Example

Checking Arguments

Problem: Odd behavior when arguments aren’t as we expect

> psi.2(x=z,c=c(1,1,1,10))

[1] 0.25 5.00 0.81 81.00

> psi.2(x=z,c=-1)

[1] 0.25 -5.00 0.81 -9.00

Solution: Put little sanity checks into the code

"Robust" loss function, for outlier-resistant regression

Inputs: vector of numbers (x), scale for crossover (c)

Outputs: vector with x^2 for small entries, c|x| for large ones

psi.3 <- function(x,c=1) {

Scale should be a single positive number

stopifnot(length(c) == 1,c>0)

psi <- ifelse(x^2 > c^2, c*abs(x), x^2)

return(psi)

}

Arguments to stopifnot() are a series of expressions which
should all evaluate to TRUE; execution halts, with error message,
at first FALSE (try it!)

36-350 Lecture 3

Defining and calling functions
The Interfaces; first look at scope

Detailed Example

What the function can see and do

Argument names over-ride those in the larger environment, inside
the function
Changes made inside the function don’t propagate

> x <- 7

> y <- c("A","C","G","T","U")

> adder <- function(y) { x<- x+y; return(x) }

> adder(1)

[1] 8

> x

[1] 7

> y

[1] "A" "C" "G" "T" "U"

There are ways around this, but they are difficult and best avoided
(see Chambers, ch. 5)

36-350 Lecture 3

Defining and calling functions
The Interfaces; first look at scope

Detailed Example

Looking in the Environment

Any name not defined in the function will be looked for in the
environment
What matters is the value when the function is called, not when
defined

> circle.area <- function(r) { return(pi*r^2) }

> circle.area(c(1,2,3))

[1] 3.141593 12.566371 28.274334

> truepi <- pi

> pi <- 3 # Only valid in 19th century Indiana, or sunken R’lyeh

> circle.area(c(1,2,3))

[1] 3 12 27

> pi <- truepi # Restore sanity

> circle.area(c(1,2,3))

[1] 3.141593 12.566371 28.274334

36-350 Lecture 3

Defining and calling functions
The Interfaces; first look at scope

Detailed Example

Respect the Interfaces!

Interfaces mark out a controlled inner environment for our code
Interference with, or from, the rest of the system is only as allowed
by interface
Good practice: explicitly give the function all the information it
needs through the arguments; this minimizes the chances of
confusion and error
Exception: true universals like π

Likewise, output should only be through the return value
Will say more about breaking up tasks and about environments
later
Further reading: Herbert Simon, The Sciences of the Artificial

36-350 Lecture 3

Defining and calling functions
The Interfaces; first look at scope

Detailed Example

Example: Improving on Friday’s Lab

We want to fit the statistical model

Y = y0Na + noise

where Y is the per-capita “gross metropolitan product” of a city,
N is its population, and y0 and a are parameters
Approximate the derivative of error w.r.t a and move against it

MSE (a) ≡ 1

n

n∑
i=1

(Yi − y0Na
i)2

MSE ′(a) ≈ MSE (a + h)−MSE (a)

h
at+1 − at ∝ −MSE ′(a)

36-350 Lecture 3

Defining and calling functions
The Interfaces; first look at scope

Detailed Example

The code given:

maximum.iterations <- 100

deriv.step <- 1/1000

step.scale <- 1e-12

stopping.deriv <- 1/100

iteration <- 0

deriv <- Inf

a <- 0.15

while ((iteration < maximum.iterations) && (deriv > stopping.deriv)) {

iteration <- iteration + 1

mse.1 <- mean((gmp$pcgmp - 6611*gmp$pop^a)^2)

mse.2 <- mean((gmp$pcgmp - 6611*gmp$pop^(a+deriv.step))^2)

deriv <- (mse.2 - mse.1)/deriv.step

a <- a - step.scale*deriv

}

list(a=a,iterations=iteration,converged=(iteration < maximum.iterations))

36-350 Lecture 3

Defining and calling functions
The Interfaces; first look at scope

Detailed Example

What’s wrong with this?

Not encapsulated: Re-run by cutting and pasting code — but
how much of it? Also, hard to make part of something larger

Inflexible: To change initial guess at a, have to edit, cut,
paste, and re-run

Error-prone: To change the data set, have to edit, cut, paste,
re-run, and hope that all the edits are consistent

Hard to fix: should top when absolute value of derivative is
small, but this stops when large and negative. Imagine having
five copies of this and needing to fix same bug on each.

Will turn this into a function and then improve it; comments
omitted here, see online

36-350 Lecture 3

Defining and calling functions
The Interfaces; first look at scope

Detailed Example

First attempt, with logic fix:

estimate.scaling.exponent.1 <- function(a) {

maximum.iterations <- 100

deriv.step <- 1/1000

step.scale <- 1e-12

stopping.deriv <- 1/100

iteration <- 0

deriv <- Inf

while ((iteration < maximum.iterations) && (abs(deriv) > stopping.deriv)) {

iteration <- iteration + 1

mse.1 <- mean((gmp$pcgmp - 6611*gmp$pop^a)^2)

mse.2 <- mean((gmp$pcgmp - 6611*gmp$pop^(a+deriv.step))^2)

deriv <- (mse.2 - mse.1)/deriv.step

a <- a - step.scale*deriv

}

fit <- list(a=a,iterations=iteration,

converged=(iteration < maximum.iterations))

return(fit)

}

36-350 Lecture 3

Defining and calling functions
The Interfaces; first look at scope

Detailed Example

Problem: All those magic constants!
Solution: Make them defaults

estimate.scaling.exponent.2 <- function(a, y0=6611, maximum.iterations=100,

deriv.step = 1/100, step.scale = 1e-12, stopping.deriv = 1/100) {

iteration <- 0

deriv <- Inf

while ((iteration < maximum.iterations) && (abs(deriv) > stopping.deriv)) {

iteration <- iteration + 1

mse.1 <- mean((gmp$pcgmp - y0*gmp$pop^a)^2)

mse.2 <- mean((gmp$pcgmp - y0*gmp$pop^(a+deriv.step))^2)

deriv <- (mse.2 - mse.1)/deriv.step

a <- a - step.scale*deriv

}

fit <- list(a=a,iterations=iteration,

converged=(iteration < maximum.iterations))

return(fit)

}

Exercise: Experiment with different values of deriv.step

36-350 Lecture 3

Defining and calling functions
The Interfaces; first look at scope

Detailed Example

Problem: Why type out the same calculation of the MSE twice?
Solution: Declare a function

estimate.scaling.exponent.3 <- function(a, y0=6611, maximum.iterations=100,

deriv.step = 1/100, step.scale = 1e-12, stopping.deriv = 1/100) {

iteration <- 0

deriv <- Inf

mse <- function(a) { mean((gmp$pcgmp - y0*gmp$pop^a)^2) }

while ((iteration < maximum.iterations) && (abs(deriv) > stopping.deriv)) {

iteration <- iteration + 1

deriv <- (mse(a+deriv.step) - mse(a))/deriv.step

a <- a - step.scale*deriv

}

fit <- list(a=a,iterations=iteration,

converged=(iteration < maximum.iterations))

return(fit)

}

mse() declared inside estimate.scaling.exponent.3(), so it
won’t be added to the global (terminal) environment, but it can
see y0

36-350 Lecture 3

Defining and calling functions
The Interfaces; first look at scope

Detailed Example

Problem: Locked in to using specific columns of gmp; shouldn’t
have to re-write just to compare two data sets
Solution: More arguments, with defaults

estimate.scaling.exponent.4 <- function(a, y0=6611, response=gmp$pcgmp,

predictor = gmp$pop, maximum.iterations=100, deriv.step = 1/100,

step.scale = 1e-12, stopping.deriv = 1/100) {

iteration <- 0

deriv <- Inf

mse <- function(a) { mean((response - y0*predictor^a)^2) }

while ((iteration < maximum.iterations) && (abs(deriv) > stopping.deriv)) {

iteration <- iteration + 1

deriv <- (mse(a+deriv.step) - mse(a))/deriv.step

a <- a - step.scale*deriv

}

fit <- list(a=a,iterations=iteration,

converged=(iteration < maximum.iterations))

return(fit)

}

36-350 Lecture 3

Defining and calling functions
The Interfaces; first look at scope

Detailed Example

Respecting the interfaces: We could turn the while() loop into a
for() loop, and nothing outside the function would care

estimate.scaling.exponent.5 <- function(a, y0=6611, response=gmp$pcgmp,

predictor = gmp$pop, maximum.iterations=100, deriv.step = 1/100,

step.scale = 1e-12, stopping.deriv = 1/100) {

mse <- function(a) { mean((response - y0*predictor^a)^2) }

for (iteration in 1:maximum.iterations) {

deriv <- (mse(a+deriv.step) - mse(a))/deriv.step

a <- a - step.scale*deriv

if (abs(deriv) <= stopping.deriv) { break() }

}

fit <- list(a=a,iterations=iteration,

converged=(iteration < maximum.iterations))

return(fit)

}

36-350 Lecture 3

Defining and calling functions
The Interfaces; first look at scope

Detailed Example

Summary

1 Functions bundle related commands together into objects:
easier to re-use, easier to modify, less risk of error, easier to
think about

2 Interfaces control what the function can see (arguments,
environment) and change (its internals, its return value)

3 Calling functions we define works just like calling built-in
functions: named arguments, defaults

Next time: working with many functions

36-350 Lecture 3

	Defining and calling functions
	The Interfaces; first look at scope
	Detailed Example

