
Statistical Computing (36-350)

split, apply, combine
Cosma Shalizi and Vincent Vu

October 10, 2011

Agenda

• Splitting and aggregating in data analysis

• Examples of the pattern

• 2011 Masters Golf Tournament

• Some tools in base R: split, *apply, *bind

• Recommended reading: Teetor, Chap 6

Patterns in programming
and data analysis

• Many programming and data analysis
problems involve similar types and
sequences of actions

• We will study one particular pattern called
“split, apply, combine” *

* this name is due to H. Wickham (2011)

Why patterns matter *

• Always keep distinct

• what you want to do

• how you do it

• Focusing on what brings clarity to intent

• how is an important detail, but can easily
obscure the high-level problem

* more on abstraction next week!

Why patterns matter

• Study and learn to recognize the pattern

• Learn good, existing solutions

Splitting and aggregating
in data analyses

Big, groupable data

• Large datasets usually highly structured

• Data can often be grouped in multiple ways

• Sometimes focus on individual pieces

• Often aggregate information across groups

A primitive example

• Row (column) sums of a matrix

• Divide the matrix into rows (columns)

• Compute the sum of each row (column)

• Combine the results into a vector

Row sums

matrix
(array of dimension 2)

Row sums

Row sums

sum()

sum()

sum()

Row sums

sum()

sum()

sum()

Row sums

sum()

sum()

sum()
vector

(array of dimension 1)

Another example

• Data organized into 48 continental states

• Fit a different model for each of 4 different
geographical regions

Splitting by region

Splitting by region

Splitting by region

data.frame

Splitting by region

data.frame

Splitting by region

Fitting by region
lm()

lm()

lm()

lm()

Fitting by region
lm(

lm(

lm(

lm(

)

)

)

)
lm objects

Combine into a list

list of lm objects

The basic pattern

f()

)

)

f(

f(

split apply combine

The basic pattern

• Divide the big problem into smaller pieces

• Work on each piece independently

• Recombine the pieces

Split, apply, combine

• This is a widely recognized pattern in
programming, and many solutions have
been developed.

• Examples

• Python – map(), filter(), reduce()

• R – split(), *apply(), aggregate(), ...

• R – plyr package (next time)

• Google mapReduce

Iteration?

• Possible to use for loops to accomplish the
task but they are

• verbose – too much how rather than
what

• painful – bookkeeping (indices,
placeholders, ...)

• clumsy – preclude implicit parallelization

SD by location

• Data:

• 10 x 10 grid of locations

• 100 measurements at each location

• Problem:

• Compute sample SD at each location

x <- array(..., dim = c(10, 10, 100))

SD by location

y <- array(dim = dim(x)[1:2])
for(i in 1:dim(x)[1]) {
 for(j in 1:dim(x)[2]) {
 y[i, j] <- sd(x[i, j,])
 }
}

iteration

y <- apply(x, 1:2, sd)

apply

apply()

• X an array

• MARGIN vector of subscripts which the
function will be applied over

• FUNCTION the function to be applied

• ... additional arguments to function

• Returns an array (or a list)

y <- apply(X, MARGIN, FUNCTION, ...)

apply()

y <- apply(x, c(1, 3), f)

Compute f(x[i, , j,]) for all i, j

y <- apply(x, 2:4, f)

Compute f(x[, i, j, k,]) for all i, j, k

*apply()

• Examples

• apply() for arrays

• lapply() for lists

• mapply() for multivariate functions

• Consult textbooks and R help for details

But...

• What about ragged data – different
numbers of observations at each location?

• What about more complex situations?

2011 Masters Golf
Tournament

Scorecard Data

• Hole-by-hole scores scraped from
www.majorschampionships.com

• Organized into a data frame of 21 columns

• hole 1 – 18 scores, round, player, country

• 296 rows

http://www.majorschampionships.com
http://www.majorschampionships.com

Scorecard Data

holes 1–18 round player country

... 4 Charl S. South Africa

... 3 Charl S. South Africa

... 2 Charl S. South Africa

... 1 Charl S. South Africa

... 4 Jason D. Australia

... 3 Jason D. Australia

...

Plan

• Look at performance of an individual

• Encapsulate the analysis into a function

• Split the data by player

• Apply the function to each player

• Combine the results

How was Tiger Woods?

df <- subset(masters2011$scorecard,
 player == 'Tiger Woods' & round == 4)
tiger <- as.numeric(df[, 1:18])
tiger <- cumsum(tiger - masters2011$course$par)

plot(tiger, type = 'l')

Extract Tiger’s scores in the 4th round and
calculate his running total to par:

holes 1–18 round player country
... 4 Tiger W. USA

How was Tiger Woods?
Tiger Woods - Round 4

hole

sc
or
e

-5

-4

-3

-2

-1

0

5 10 15

How was Tiger Woods?

tiger <- subset(masters2011$scorecard,
 player == 'Tiger Woods')

tiger <- as.matrix(tiger[order(tiger$round), 1:18])
Convert row-wise from a matrix to vector rowwise
tiger <- as.vector(t(tiger))
tiger <- cumsum(tiger - rep(masters2011$course$par, 4))

plot(tiger, type = 'l')

Extract Tiger’s scores for all 4 rounds and
calculate his running total to par:

How was Tiger Woods?
Tiger Woods - Rounds 1-4

hole

sc
or
e

-10

-8

-6

-4

-2

0

10 20 30 40 50 60 70

How was X?
runningTotal <- function(df, par = masters2011$course$par)
{
 # Reorder the rows of the data frame by round
 # (so that the scores are in chronological order)
 # and extract the scores as a matrix
 x <- as.matrix(df[order(df$round), 1:18])
 n <- nrow(x)

 # Convert from an 18 x n matrix to a vector of
 # length 18*n, row-wise
 x <- as.vector(t(x))

 # Calculate the running over/under score
 x <- cumsum(x - rep(par, n))

 return(x)
}

How was Charl Schwartzel?

Rounds 1-4

hole

sc
or
e

-14

-12

-10

-8

-6

-4

-2

0

10 20 30 40 50 60 70

Tiger Charl

charl <- runningTotal(subset(masters2011$scorecard,
 player == 'Charl Schwartzel'))

Splitting the data frame

holes 1–18 round player country

... 4 Charl S. South Africa

... 3 Charl S. South Africa

... 2 Charl S. South Africa

... 1 Charl S. South Africa

... 4 Jason D. Australia

... 3 Jason D. Australia

...

Splitting the data frame

holes 1–18 round player country

... 4 Charl S. South Africa

... 3 Charl S. South Africa

... 2 Charl S. South Africa

... 1 Charl S. South Africa

... 4 Jason D. Australia

... 3 Jason D. Australia

...

Split the data frame

• $player is a factor vector: players are
levels of the factor

• split the data frame according to the levels
of $player

• x is a list of data frames

df <- masters2011$scorecard
x <- split(df, df$player)

Apply runningTotal()

• Apply runningTotal() to each
element of x

• Result is a list of vectors

x <- lapply(x, runningTotal)

Combine the vectors into an array

• Equivalent to

rbind(x[[1]], x[[2]], ...)

• Note: vectors in x have to be of same
lengths

scores <- do.call(rbind, x)

All together

x <- split(df, df$player)
x <- lapply(x, runningTotal)
scores <- do.call(rbind, x)

split, apply, combine using base R

scores <- matrix(nrow = nlevels(df$player),
 ncol = 18 * 4)
for(i in 1:nlevels(df$player)) {
 x <- subset(df, player == levels(df$player)[i])
 scores[i,] <- runningTotal(x)
}
rownames(scores) <- levels(df$player)

iteration

hole

to
ta

l t
o

pa
r

-10

-5

0

5

10 20 30 40 50 60 70

Masters 2011

matplot(t(scores), xlab='hole',ylab='total to par', type='l')
lines(1:ncol(scores), apply(scores, 2, median), lwd = 2)

hole

to
ta

l t
o

pa
r

-10

-5

0

5

10 20 30 40 50 60 70

median
golfer

Summary

• The split, apply, combine pattern appears in
many problems

• Recognize it

• iteration (with for loops) is usually not a
good solution to the problem

• Next: abstracting the pattern and using the
plyr package

