Abstraction adjusts programming to human strengths
Refactoring adjusts code to bring out commonalities
Ways of refactoring: names, objects, common operations, general operations
Example: The jack-knife
The point of abstraction is to program in ways which don’t use people as bad computers. Economics says: rely on comparative advantage.

Computers Good at tracking arbitrary details, applying rigid rules

People Good at thinking, meaning, discovering patterns

∴ organize programming so that people spend their time on the big picture, and computers on the little things.

Abstraction — hiding details and specifics, dealing in generalities and common patterns — is a way to do this.

We have talked about lots of examples of this already:

Data structures; Functions; Interfaces; Functions as objects
One mode of abstraction is **refactoring**. The metaphor: numbers can be factored in many different ways; pick ones which emphasize the common factors:

\[
\begin{align*}
144 &= 9 \times 16 = 3 \times 3 \times 4 \times 4 \\
360 &= 6 \times 60 = 3 \times 3 \times 4 \times 5 \times 2
\end{align*}
\]

Once we have some code, and it (more or less) works, re-write it to emphasize commonalities:

- Parallel and transparent naming
- Grouping related values into objects
- Common or parallel sub-tasks become shared functions
- Common or parallel over-all tasks become general functions
Naming

R puts next to no limits on names of variables and functions
∴ we should use names that make sense to humans

- Names should indicate purpose or meaning. Call something *plot* or *predict* when, but only when, it plots or predicts.
- Similar objects should have similar names.
Example: conventions for functions related to random variables

dnorm probability density of normal r.v.

rnorm random value from normal r.v.

pnorm cumulative probability of normal r.v.

qnorm quantile of normal r.v.

dgamma probability density of gamma r.v.

ppois ?

rt ?

qchisq ?
Why Care About Names?

Your code is easier to understand
Because it is easier to understand, it is easier to make repairs and improvements
Because it is easier to understand, people (including you) do not waste time trying to puzzle it out
On the other hand, because it is easier to understand, you are more easily replaced as a programmer
Notice that the same variables keep being used together
Create a single data object (data frame, list, ...) that includes them all as parts
Replace mentions of the individual variables with mentions of parts of the unified object
Advantages of Grouping

Clarity (especially if you give the object a good name)
Makes sure that the right values are always present (pass the object as an argument to functions, rather than the components)
Memorization: if you know you are going to want to do the same calculation many times on these data values, do it once when you create the object, and store the result as a component
Notice that your code does the same thing, or nearly the same thing, in multiple places, as part doing something else. Extract the common operation. Write one function to do that operation, perhaps with additional arguments. Call the new function in the old locations.
Main code focuses on *what* is to be done, not *how* (abstraction, human understanding)
Only have to check one piece of code for the sub-task
Improvements to the sub-task propagate everywhere
Drawback: bugs propagate everywhere too
Notice that you have several functions doing parallel, or nearly parallel, operations

Extract the common pattern or general operation

Write one function to do the general operation, with additional arguments (typically including functions)

Call the new general function with appropriate arguments, rather than the old functions
Clarifies the logic of what you are doing (abstraction, human understanding, use of statistical theory)
Extending the same operation to new tasks is easy, not re-writing code from scratch
Old functions provide test cases to check if general function works
Re-factoring tends to make code look more like the result of top-down design

This is no accident
Let’s look at an example of using refactoring
Remember the jackknife from assignments: we have an estimator \(\hat{\theta} \) of a parameter \(\theta \), and want to know the standard error of our estimate, \(se_{\hat{\theta}} \).

The jackknife approximation is: omit case \(i \), get estimate \(\hat{\theta}_{(-i)} \). Take the variance of all the \(\hat{\theta}_{(-i)} \), and multiply by \(\frac{(n-1)^2}{n} \) to get \(\approx \) variance of \(\hat{\theta} \); then \(se_{\hat{\theta}} = \) square root of that variance.

(Why \(\frac{(n-1)^2}{n} \)? Think about just getting the standard error of the mean)
```
gamma.jackknife <- function(data) {
  n <- length(data)
  jackknife.ests <- matrix(NA, nrow=2, ncol=n)
  rownames(jackknife.ests) = c("a","s")
  for (omitted.point in 1:n) {
    fit <- gamma.est(data[-omitted.point])
    jackknife.ests["a",omitted.point] <- fit$a
    jackknife.ests["s",omitted.point] <- fit$s
  }
  variance.of.ests <- apply(jackknife.ests,1,var)
  jackknife.vars <- ((n-1)^2/n)*variance.of.ests
  jackknife.stderrs <- sqrt(jackknife.vars)
  return(jackknife.stderrs)
}
```
Jackknife for the mean

mean.jackknife <- function(data) {
 n <- length(data)
 jackknife.ests <- vector(length=n)
 for (omitted.point in 1:n) {
 new.mean <- mean(data[-omitted.point])
 }
 variance.of.ests <- var(new.mean)
 jackknife.var <- ((n-1)^2/n)*variance.of.ests
 jackknife.stderr <- sqrt(jackknife.var)
 return(jackknife.stderr)
}
jackknife.lm <- function(data, p) {
 n <- nrow(data)
 jackknife.ests <- matrix(0, nrow=p, ncol=n)
 for (omit in 1:n) {
 new.coefs <- lm(your.formula.here, data=data[-omit,])$coefficients
 jackknife.ests[, omit] <- new.coefs
 }
 variance.of.ests <- apply(jackknife.ests, 1, var)
 jackknife.var <- ((n-1)^2/n) * variance.of.ests
 jackknife.stderr <- sqrt(jackknife.var)
 return(jackknife.stderr)
}
Omitting one point or row is a common sub-task
The general pattern:

figure out the size of the data
for each case
 omit that case
 repeat some estimation and get a vector of numbers
take variances across cases
scale up variances
take the square roots

Refactor by extracting the common “omit one” operation
Refactor by defining a general “jackknife” operation
The Common Operation

Works for vectors, lists, 1D and 2D arrays, matrices, data frames:

```
omit.case <- function(data,i) {
  d <- dim(data)
  if (is.null(d) || (length(d)==1)) {
    return(data[-i])
  } else {
    return(data[-i,])
  }
}
```

EXERCISE: Modify so it also handles higher-dimensional arrays
The General Operation

```r
jackknife <- function(estimator, data) {
  if (is.null(dim(data))) { n <- length(data) }
  else { n <- nrow(data) }
  jackknife.ests <- c()
  for (omit in 1:n) {
    reestimate <- estimator(omit.case(data, omit))
    jackknife.ests <- cbind(jackknife.ests, reestimate)
  }
  var.of.reestimates <- apply(jackknife.ests, 1, var)
  jackknife.var <- ((n-1)^2/n) * var.of.reestimates
  jackknife.stderr <- sqrt(jackknife.var)
  return(jackknife.stderr)
}
```

Could allow other arguments to `estimator`, spin off finding `n` as its own function, etc.
> jackknife(estimator=mean, data=rnorm(n=400, mean=7, sd=5))
[1] 0.2361081
> est.coefs <- function(data) {
 return(lm(Hwt~Bwt, data=data)$coefficients)
}
> est.coefs(cats)
 (Intercept) Bwt
 -0.3566624 4.0340627
> jackknife(estimator=est.coefs, data=cats)
 (Intercept) Bwt
 0.8314142 0.3166847
Summary

Refactoring adjusts code to emphasize patterns

- Names
- Objects
- Common operations
- General operations

Refactoring makes code look more like top-down design

Refactoring usually involves abstraction

Abstraction emphasizes human strengths