Base R commands
Transforming Uniform Random Numbers
Where Do the Uniforms Come From?

Statistical Computing (36-350)
Lecture 16: Simulation I: Generating Random Variables

Cosma Shalizi and Vincent Vu

24 October 2011
Agenda

- The basic random-variable commands
- Transforming uniform random variables to other distributions
 - The quantile method
 - The rejection method
- Where the uniform random numbers come from

REQUIRED READING: Textbook, chapter 5
OPTIONAL READING: *R Cookbook*, sections 8.2–8.7
Chambers, section 6.10
Stochastic Simulation

Why simulate?
- We want to see what a probability model actually does
- We want to understand how our procedure works on a test case
- We want to use a partly-random procedure

All of these require drawing random variables from distributions
Built-in Random Variable Generators

runif, rnorm, rbinom, rpois, rexp, etc. etc.
First argument is always n, number of variables to generate
Subsequent arguments are parameters to distribution
Parameters are recycled:

```r
> rnorm(n=4, mean=c(-1000,1000), sd=1)
[1]  -999.3637  1000.4710 -1000.4449  1000.1040
```
sample(x, size, replace=FALSE, prob=NULL)

draw random sample of size points from x, optionally with replacement and/or weights
x can be anything where length() makes sense, basically sample(x) does a random permutation

sample(cats$Sex) # Randomly shuffle sexes among cats

If x is a single number, treat it like 1:x

> sample(5)
[1] 1 4 3 2 5
The Quantile Transform Method

Given: uniform random variable U, CDF F
Claim: $X = F^{-1}(U)$ is a random variable with CDF F
Proof:

$$\mathbb{P}(X \leq a) = \mathbb{P}(F^{-1}(U) \leq a) = \mathbb{P}(U \leq F(a)) = F(a)$$

F^{-1} is the quantile function
So if we can generate uniforms and we can calculate quantiles, we can generate non-uniforms
To turn U into a coin-toss with bias p: is $U \leq p$ or not?
To turn U into a binomial: start with $X = 0$; if $U \leq F(X)$, stop, otherwise add 1 to X and check again
Tedious do this iteratively
No next value for continuous random variables
Quantiles solve both difficulties
Quantile functions often don’t have closed form, and don’t have nice numerical solutions. But we know the probability density function — can we use that?
Suppose the pdf f is zero outside an interval $[c, d]$, and $\leq M$ on the interval. Draw the rectangle $[c, d] \times [0, M]$, and the curve f. Area under the curve $= 1$. Area under curve and $x \leq a$ is $F(a)$. How can we uniformly sample area under the curve?
Base R commands
Transforming Uniform Random Numbers
Where Do the Uniforms Come From?

M <- 3.3; curve(dbeta(x, 5, 10), from=0, to=1, ylim=c(0, M))
We sample uniformly from the box, and take the points under the curve

\[R \sim \text{Unif}(c, d) \]

\[U \sim \text{Unif}(0, 1) \]

If \(MU \leq f(R) \) then \(X = R \), otherwise try again
Base R commands
Transforming Uniform Random Numbers
Where Do the Uniforms Come From?

Quantile Transform
Rejection Method

r <- runif(300, min=0, max=1)
u <- runif(300, min=0, max=1)
below <- which(M*u <= dbeta(r, 5, 10))
points(r[below], M*u[below], pch="+"); points(r[-below], M*u[-below], pch="-")
Histogram of r[below]

```r
hist(r[below], xlim=c(0,1), probability=TRUE); curve(dbeta(x, 5, 10), add=TRUE);
points(r[below], M*u[below], pch="+"); points(r[-below], M*u[-below], pch="-")
```
If f doesn’t go to zero outside $[c, d]$, try to find another density ρ where

- ρ also has unlimited support
- $f(a) \leq M \rho(a)$ everywhere
- we can generate from ρ (say by quantiles)

Then $R \sim \rho$, and accept when $MU \rho(R) \leq f(R)$

(Uniformly distributed on the area under ρ)
Need to make multiple “proposals” R for each X
eq, generated 300 for figure, only accepted 78
Important for efficiency to keep this ratio small
Best way is make sure the proposal distribution is close to the target
Where Do the Uniforms come From?

Uniform numbers are generated by finite algorithms, so really only pseudo-random
We want:

- Number of U_i in $[a, b] \subseteq [0, 1]$ is $\propto (b - a)$
- No correlation between successive U_i
- No detectable dependences in larger or longer groupings

There are now ways of doing a very good job of all of these
Too involved to go into here
Rotations

Take

\[U_{i+1} = U_i + \alpha \mod 1 \]

If \(\alpha \) is irrational, this never repeats and is uniformly distributed.

If \(\alpha \) is rational but the denominator is very large, the period is very long, and it is uniform on those points.
Arnold Cat Map:

\[U_{t+1} = U_t + \phi_t \mod 1 \quad (1) \]
\[\phi_{t+1} = U_t + 2\phi_t \mod 1 \quad (2) \]

If we report only \(U_t \), the result is uniformly distributed and hard to predict.
Base R commands
Transforming Uniform Random Numbers
Where Do the Uniforms Come From?

Wikipedia, s.v. “Arnold’s cat map”
successive values from runif vs. Arnold cat map
Nobody uses the cat map, but similar ideas are built into the random-number generator in R (with more dimensions)
Generally: Long periods, rapid divergence of near-by initial conditions (unstable), uniform distribution, low correlation
Using the default generator is a very good idea, unless you really know what you are doing
Setting the Seed

The sequence of pseudo-random numbers depends on the initial condition, or seed

Stored in `.Random.seed`, a global variable

To reproduce results exactly, set the seed

```r
> old.seed <- .Random.seed # Store the seed
> set.seed(20010805) # Set it to the day I adopted my cat
> runif(2)
[1] 0.1378908 0.7739319
> set.seed(20010805) # Reset it
> runif(2)
[1] 0.1378908 0.7739319
> .Random.seed <- old.seed # Restore old seed
```

See Chambers, §6.10, for some subtleties about working with external programs
Summary

- Unstable dynamical systems give us something very like uniform random numbers
- We can transform these into other distributions when we can compute the distribution function
 - The quantile method when we can invert the CDF
 - The rejection method if all we have is the pdf
- The basic R commands encapsulate a lot of this for us