
Statistical Computing (36-350)

Databases II
Cosma Shalizi and Vincent Vu

November 30, 2011

Presentations

• 10~12 minutes each group

• E-mail slides (PDF or Keynote) to vqv
+teaching@cmu.edu (subject: 36-350
Presentation) by Sunday 11:59PM

• Be prepared to present Monday 10:30AM

mailto:vqv@cmu.edu
mailto:vqv@cmu.edu
mailto:vqv@cmu.edu
mailto:vqv@cmu.edu

Presentations

• Explain

• what your project is about

• how you solved/will solve problems

• why you made certain choices

• where you are now

Agenda

• SQL

• More on aggregation

• Joining tables

• Accessing databases from R with DBI

Note from last time

• Q: “Is it possible to select all columns
except one?”

• A: Yes, but in general a bad practice

• Be explicit. Select only columns that you
need – databases can be huge!

Aggregation

• Use GROUP BY clause to perform
calculations on groups

• Just like split-apply-combine

• Group rows in table according to some
criterion

• Perform some computation

• Return a table with results

Aggregation

sqlite> SELECT playerID, SUM(salary) FROM Salaries GROUP
BY playerID
aardsda01|4259750.0
aasedo01|2300000.0
abadan01|327000.0
abbotje01|985000.0
abbotji01|12960500.0
abbotku01|4237000.0
abbotky01|259000.0
abbotpa01|6471000.0

...

Total salary by player

Aggregation

sqlite> SELECT playerID, SUM(salary) AS totalSalary FROM
Salaries GROUP BY playerID ORDER BY totalSalary DESC
LIMIT 10;
rodrial01|264416252.0
jeterde01|205430000.0
ramirma02|204807769.0
bondsba01|188245322.0
johnsra05|175550019.0
sheffga01|168008550.0
maddugr01|153845000.0
griffke02|151703682.0
delgaca01|146299000.0
martipe02|146259585.0

Top 10 total salaries

Selecting rows while
aggregating

• WHERE clause is applied pre-aggregation.

• Select subsets of rows post-aggregation
with HAVING clause

Use HAVING to subset results
of aggregation

sqlite> SELECT playerID, SUM(salary) AS totalSalary FROM
Salaries GROUP BY playerID HAVING totalSalary >
200000000;
jeterde01|205430000.0
rodrial01|264416252.0
ramirma02|204807769.0

Return groups having “total Salary > $200 million”

Joining Tables

• Data often divided across tables

• Join tables to fetch data from multiple tables

• Use INNER JOIN to merge tables based on a
key

• Other types of joins:

• OUTER, OUTER LEFT, OUTER RIGHT

Inner Join

last_name first_name physician_id

Doe John 34

Brown Charlie 55

Morgan Dexter 55

Vu Vince

patients physicians
physician_id last_name first_name

34 Jekyll Henry

55 House Gregory

Inner Join

last_name first_name physician_id

Doe John 34

Brown Charlie 55

Morgan Dexter 55

Vu Vince

patients physicians
physician_id last_name first_name

34 Jekyll Henry

55 House Gregory

Inner Join

patients.
last_name

patients.
first_name

patients.
physician_id

physicians.
last_name

physicians.
first_name

physicians.
physician_id

Doe John 34 Jekyll Henry 34

Brown Charlie 55 House Gregory 55

Morgan Dexter 55 House Gregory 55

Joined table

Note that the row corresponding to
“Vince Vu” was dropped

Inner Join

• Cartesian Product:

• Combine every row of Table A with every
row of Table B

• Select rows that satisfy the JOIN predicate

• In previous example, JOIN predicate is
“patients.physician_id ==
physicians.physician_id”

Example

• Biographic information in table ‘Master’

• Batting statistics in table ‘Batting’

• Salary information in table ‘Salaries

• Problem: Get player name, batting
statistics, and salaries

• Solution: Join tables using playerID
key

Batting stats and player name

SELECT nameLast,nameFirst,yearID,AB,H
FROM Master INNER JOIN Batting USING(playerID);

Batting stats and player name

SELECT nameLast,nameFirst,yearID,AB,H
FROM Master INNER JOIN Batting USING(playerID);

This part “creates” a table containing
columns from Master and Batting

where playerID matches both

Batting stats and player name
SELECT nameLast,nameFirst,yearID,AB,H
FROM Master INNER JOIN Batting USING(playerID);

sqlite> SELECT nameLast,nameFirst,yearID,AB,H FROM Master
INNER JOIN Batting USING(playerID) LIMIT 10;
Aaron|Hank|1954|468|131
Aaron|Hank|1955|602|189
Aaron|Hank|1956|609|200
Aaron|Hank|1957|615|198
Aaron|Hank|1958|601|196
Aaron|Hank|1959|629|223
Aaron|Hank|1960|590|172
Aaron|Hank|1961|603|197
Aaron|Hank|1962|592|191
Aaron|Hank|1963|631|201
...

Equivalently

SELECT nameLast,nameFirst,yearID,AB,H
FROM Master INNER JOIN Batting
ON Master.playerID == Batting.playerID;

This form is useful when the key column has a different
name in each table

Natural Join

• When two tables have exactly one column
in common, INNER JOIN can be replaced
by NATURAL JOIN and USING() can be
omitted

• *Resulting table willy have one copy of the
common column

Natural Join

last_name first_name physician_id

Doe John 34

Brown Charlie 55

Morgan Dexter 55

Vu Vince

patients physicians
physician_id last_name first_name

34 Jekyll Henry

55 House Gregory

Natural Join

patients.
last_name

patients.
first_name

physicians.
last_name

physicians.
first_name physician_id

Doe John Jekyll Henry 34

Brown Charlie House Gregory 55

Morgan Dexter House Gregory 55

Joined table

Note that there is only one copy of
“physician_id”

Batting stats and player name
SELECT nameLast,nameFirst,yearID,AB,H
FROM Master NATURAL JOIN Batting;

sqlite> SELECT nameLast,nameFirst,yearID,AB,H FROM Master
NATURAL JOIN Batting;
Aaron|Hank|1954|468|131
Aaron|Hank|1955|602|189
Aaron|Hank|1956|609|200
Aaron|Hank|1957|615|198
Aaron|Hank|1958|601|196
Aaron|Hank|1959|629|223
Aaron|Hank|1960|590|172
Aaron|Hank|1961|603|197
Aaron|Hank|1962|592|191
Aaron|Hank|1963|631|201
...

SELECT nameLast,nameFirst,yearID,AB,H,salary
FROM Master NATURAL JOIN Batting NATURAL JOIN
Salaries ORDER BY salary DESC LIMIT 10;

Rodriguez Alex 2009 444 127 33000000.0
Rodriguez Alex 2010 522 141 33000000.0
Rodriguez Alex 2008 510 154 28000000.0
Rodriguez Alex 2005 605 194 26000000.0
Sabathia C.C. 2010 5 1 24285714.0
Ramirez Manny 2009 352 102 23854494.0
Giambi Jason 2007 254 60 23428571.0
Giambi Jason 2008 458 113 23428571.0
Rodriguez Alex 2007 583 183 22708525.0
Jeter Derek 2010 663 179 22600000.0

Multiple joins

Dealing with name
collisions

• When two tables have columns with same
names, refer to each with table.var
notation

• Rename variables using the AS operator

SELECT patients.last_name AS patname,
 physicians.last_name AS docname
FROM patients NATURAL JOIN physicians;

SELECT p.last_name AS patname,
 d.last_name AS docname
FROM patients AS p NATURAL JOIN physicians AS d;

Use AS to make it easier to refer to
multiple tables

patients and doctors both have last_name

Accessing Databases
with R and DBI

DBMS

• Database Management System

• Software package for operating a database
– can include server

• Problem: Different systems, different
software, different interfaces

Not necessary to learn
every different system

DBI

• Database Interface for R

• Decouples front-end and back-end of
connectivity to the DBMS

• Ensures that interface that you see, is same
regardless of what specific DBMS you
connect to.

DBI

> install.packages('DBI', dependencies = T)

Database
Server

DBI You

Driver

Driver allows DBI to talk to specific DBMS

DBMS could be Oracle, MySQL,
PostgreSQL, ...

R

Driver

• Handles back-end communication with
specific Database Server.

• Drivers available for

• Oracle, MySQL, PostgreSQL, SQLite, ...

• See http://cran.r-project.org/package=DBI

http://cran.r-project.org/package=DBI
http://cran.r-project.org/package=DBI

Example: SQLite

> install.packages('RSQLite', dependencies = T)

DBI Device Driver for SQLite

How to use DBI

1. Load proper DBMS driver

2. Establish a connection to the DBMS

3. Interact with DBMS

4. Disconnect from DBMS

5. Unload driver

Load driver and connect

library(RSQLite)

Instantiate driver and open a connection to the db
drv <- dbDriver('SQLite')
con <- dbConnect(drv, dbname = 'baseball.db')

In this example we connect to an SQLite database

Load driver and connect

library(RMySQL)

Instantiate driver and open a connection to the db
drv <- dbDriver('RMySQL')
con <- dbConnect(drv, dbname = 'mydb',
 use = 'vqv', password = 'secret',
 host = 'sql.vincevu.com')

In this example we connect to a MySQL database

Basic DBI Functions

• dbListTables() – List tables in the db

• dbListFields() – List columns in table

• dbReadTable() – Import table as data
frame

• dbGetQuery() – Send SQL query and
get data frame as result

List tables in the database

> dbListTables(con)
 [1] "AllstarFull" "Appearances" "AwardsManagers"
 [4] "AwardsPlayers" "AwardsShareManagers" "AwardsSharePlayers"
 [7] "Batting" "BattingPost" "Fielding"
[10] "FieldingOF" "FieldingPost" "HallOfFame"
[13] "Managers" "ManagersHalf" "Master"
[16] "Pitching" "PitchingPost" "Salaries"
[19] "Schools" "SchoolsPlayers" "SeriesPost"
[22] "Teams" "TeamsFranchises" "TeamsHalf"
[25] "sqlite_sequence" "xref_stats"

List columns in a table

> dbListFields(con, 'Salaries')
[1] "yearID" "teamID" "lgID" "playerID" "salary"

Read entire table as data
frame

> df <- dbReadTable(con, 'Salaries')
> head(df)
 yearID teamID lgID playerID salary
1 1980 TOR AL stiebda01 55000
2 1981 NYA AL jacksre01 588000
3 1981 TOR AL stiebda01 85000
4 1982 TOR AL stiebda01 250000
5 1983 TOR AL stiebda01 450000
6 1984 TOR AL stiebda01 650000

Get results of SQL query

> dbGetQuery(con, 'SELECT * FROM Salaries LIMIT 10')
yearID teamID lgID playerID salary
1 1980 TOR AL stiebda01 55000
2 1981 NYA AL jacksre01 588000
3 1981 TOR AL stiebda01 85000
4 1982 TOR AL stiebda01 250000
5 1983 TOR AL stiebda01 450000
6 1984 TOR AL stiebda01 650000
7 1985 ATL NL barkele01 870000
8 1985 ATL NL bedrost01 550000
9 1985 ATL NL benedbr01 545000
10 1985 ATL NL campri01 633333

Use paste() to construct
complex queries

> df <- dbGetQuery(con, paste(
 'SELECT nameLast,nameFirst,yearID,salary ',
 'FROM Master NATURAL JOIN Salaries')
)
> head(df)
 nameLast nameFirst yearID salary
1 Aase Don 1986 600000
2 Aase Don 1987 625000
3 Aase Don 1988 675000
4 Aase Don 1989 400000
5 Abad Andy 2006 327000
6 Abbott Jeff 1998 175000

Disconnect and unload driver

Close the connection and unload the driver
dbDisconnect(con)
dbUnloadDriver(drv)

Remember to clean-up!

Trade-offs

• Q: Why not just read all tables in the
database into R and do the merging,
selecting, etc... within R?

• A: Tables can be huge! More efficient to do
simple computations, reductions on the
server.

Trade-offs

• Best solutions are a mix of both R and SQL

Summary

• Join tables to get columns from different
tables

• DBI provides a uniform interface within R
for accessing databasesNext: Subqueries in
SQL (in Lab)

