
Homework 11: Several Hundred Degrees of

Separation

36-350, Fall 2013

Due at 11:59 pm on TUESDAY, 26 November 2013

We continue building our own version of page-rank, based on actually taking
a random walk across the Web. Make sure that you have read and understood
the solutions to the last assignment, and that your version of R is up to date.

Previously, we saw functions which downloaded a Web page, found all the
hyperlinks, extracted the links to absolute URLs, and chose a random link to
follow. We also had a final over-all function, surf.to.mk2, which measured how
many random steps it took to reach a target website. A websites page-rank is
the probability of reaching it by a random walk over the web: the higher the
rank, the more short paths there are to the website, through sites which are
themselves highly visited by a random walk. The probability of a random walk
visiting a site is the inverse of the expected number of steps it takes the walk
to reach the site.

The random walker or web-surfer we built only deals with absolute URLs,
beginning http://. Many web-pages will have lots of relative URLs, however,
which point to other parts of the same website. These are very important for
actually getting the over-all structure of the web graph. (If nothing else, those
pages may contain many links to other websites.) So we really ought to try to
handle the relative URLs.

Relative URLs are interpreted in two slightly different ways, depending on
the ending of the current URL.
(i) If the current URL ends with /, the relative URL is just appended to the
end of the current URL. Thus if we are at

http://www.stat.cmu.edu/

and see the URL privacy/, the interpretation is

http://www.stat.cmu.edu/privacy

(ii) If the current URL doesnt end with /, we remove everything after the final
/, and then append the new relative URL1. If were at

1This ignores some subtle points about maintaining “canonical” URLs: if the relative URL
begins /, we should really truncate that, and if it begins ../, we should truncate one level of
the directory hierarchy in the current URL. For this assignment, let the Web server handle
these things.

1

http://www.stat.cmu.edu/~cshalizi/statcomp/13/index.html

and we see lectures/20/lecture-20.pdf, we go to

http://www.stat.cmu.edu/~cshalizi/statcomp/13/lectures/20/lecture-20.pdf

If were at

http://www.youtube.com/watch?feature=player_embedded&v=zoRfgeiRD_c

and we see the URL

/watch?v=tz1R7nCdCbM&feature=fvwrel

then we go to

http://www.youtube.com//watch?v=tz1R7nCdCbM&feature=fvwrel

2

1. (10) Write a function which takes in a vector of link anchors (such as
that returned by the raise.anchors function from lab), and returns
all the ones which do not contain the string "http://. These are pre-
sumably relative URLs. Check that it works by comparing its output on
raise.anchors(statshome) with what you expect to see from manually
inspecting the latter.

2. (a) (20) Write a function which takes the current URL (one character
string) and a set of relative URLs (a vector of character strings), and
returns the appropriate vector of “absolutized” URLs. Make sure it
works on the examples given above. For full credit, do not use any
loops. (Hint: paste.)

(b) (5) What does your function give when applied to the relative URLs
found in problem 1? Do these make sense?

3. Modify surf.to.mk2 so that when it comes to a URL, it randomly chooses
from among both the absolute and the relative URLs, but otherwise works
as before. Call the new function surf.to.mk3. Check that the examples
from the last assignment will still run, and that they at least sometimes
follow relative URLs.

4. (10) What fraction of paths started at http://crookedtimber.org reach
amazon.com within 300 steps? Reach powells.com? Reach sourceforge.net?

5. (5) What are the average path-lengths of the successful paths to those
three sites? The standard deviations of the successful path-lengths?

6. (10) What are the probabilities of reaching amazon.com, powells.com and
sourceforge.net within 300 steps, starting from http://myblog.webbish6.com?
What are the means and standard deviations of the lengths of the suc-
cessful paths?

7. (10) Write a function which takes in an origin URL, a target, a maximum
number of random-walk steps and a number of random walks, and returns
the fraction of random walks which succeeded, the mean length of the
successful walks, and the standard deviation of successful walks. (That
is, it should encapsulate what you did in problems 4–6.) Should it match
your previous results if you re-run them?

Important Note: If you were going to do this on any kind of scale, it would
be vital to follow the Web Robots exclusion protocol (see, e.g., robotstxt.org).
Failing to do so is not just extremely rude, it is also an excellent way of getting
yourself in trouble with people who command serious resources online.

3

http://robotstxt.org

