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Agenda

Basics of optimization
Gradient descent
Newton’s method
Curve-fitting
R: optim, nls

READING: Recipes 13.1 and 13.2 in The R Cookbook
OPTIONAL READING: 1.1, 2.1 and 2.2 in Red Plenty
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Examples of Optimization Problems

Minimize mean-squared error of regression surface (Gauss, c. 1800)
Maximize likelihood of distribution (Fisher, c. 1918)
Maximize output of plywood from given supplies and factories
(Kantorovich, 1939)
Maximize output of tanks from given supplies and factories;
minimize number of bombing runs to destroy factory (c. 1939–1945)
Maximize return of portfolio for given volatility (Markowitz, 1950s)
Minimize cost of airline flight schedule (Kantorovich...)
Maximize reproductive fitness of an organism (Maynard Smith)
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Optimization Problems

Given an objective function f :D 7→R, find

θ∗ = argmin
θ

f (θ)

Basics: maximizing f is minimizing −f :

argmin
θ
−f (θ) = argmax

θ
f (θ)

If h is strictly increasing (e.g., log), then

argmin
θ

f (θ) = argmin
θ

h(f (θ))
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Considerations

Approximation: How close can we get to θ∗, and/or f (θ∗)?

Time complexity: How many computer steps does that take?
Varies with precision of approximation, niceness of f , size of D, size of data, method. . .

Most optimization algorithms use successive approximation, so
distinguish number of iterations from cost of each iteration
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As you remember from calculus. . .

Suppose x is one dimensional and f is smooth

If x∗ is an interior minimum /maximum / extremum point

df

dx

�

�

�

�

�

x=x∗
= 0

If x∗ a minimum,
d2f

dx2

�

�

�

�

�

x=x∗
> 0
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As you remember from calculus. . .

This all carries over to multiple dimensions:
At an interior extremum,

∇f (θ∗) = 0

At an interior minimum,

∇2f (θ∗)≥ 0

meaning for any vector v,

vT∇2f (θ∗)v≥ 0

∇2f = the Hessian, H
θ might just be a local minimum
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Gradients and Changes to f

f ′(x0) =
df

dx

�

�

�

�

�

x=x0

= lim
x→x0

f (x)− f (x0)

x− x0

f (x) ≈ f (x0)+ (x− x0)f
′(x0)

Locally, the function looks linear
To minimize a linear function, move down the slope
Multivariate version:

f (θ)≈ f (θ0)+ (θ−θ0) · ∇f (θ0)

∇f (θ0) points in the direction of fastest ascent at θ0
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Gradient Descent

1 Start with initial guess for θ, step-size η
2 While ((not too tired) and (making adequate progress))

1 Find gradient∇f (θ)
2 Set θ← θ−η∇f (θ)

3 Return final θ as approximate θ∗

Variations: adaptively adjust η to make sure of improvement
or search along the gradient direction for minimum
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Pros and Cons of Gradient Descent

Pro:
Moves in direction of greatest immediate improvement
If η is small enough, gets to a local minimum eventually, and
then stops

Cons:
“Sufficiently small” η can be really, really small
Slowness or zig-zagging if components of∇f are very different
sizes

How much work do we need?
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Scaling

Big-O notation:
h(x) =O(g(x))

means

lim
x→∞

h(x)

g(x)
= c

for some c 6= 0

e.g., x2− 5000x+ 123456778=O(x2)

ex/(1+ ex) =O(1)

Useful to look at over-all scaling, hiding details
Also done when the limit is x→ 0
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How Much Work is Gradient Descent?

Pro:
For nice f , f (θ)≤ f (θ∗)+ ε in O(ε−2) iterations
For very nice f , only O(logε−1) iterations

To get∇f (θ), take p derivatives, ∴ each iteration costs O(p)
Con:

Taking derivatives can slow down as data grows — each
iteration might really be O(np)
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Taylor Series

What if we do a quadratic approximation to f ?

f (x)≈ f (x0)+ (x− x0)f
′(x0)+

1

2
(x− x0)

2f ′′(x0)

Special cases of general idea of Taylor approximation

Simplifies if x0 is a minimum since then f ′(x0) = 0:

f (x)≈ f (x0)+
1

2
(x− x0)

2f ′′(x0)

Near a minimum, smooth functions look like parabolas
Carries over to the multivariate case:

f (θ∗)≈ f (θ)+ (θ∗−θ)∇f (θ)+
1

2
(θ∗−θ)T H(θ)(θ∗−θ)
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Minimizing a Quadratic

If we know
f (x) = ax2+ bx+ c

we minimize exactly:

2ax∗+ b = 0

x∗ =
−b

2a

If
f (x) = a(x− x0)

2+ b(x− x0)+ c

then

x∗ = x0−
1

2

b

a
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Newton’s Method

Use a Taylor expansion:

f (θ∗)≈ f (θ)+ (θ∗−θ)∇f (θ)+
1

2
(θ∗−θ)T H(θ)(θ∗−θ)

Take gradient with respect to θ∗ and set to zero:

0 = ∇f (θ)+H(θ)(θ∗−θ)
θ∗ = θ− (H(θ))−1∇f (θ)

Works exactly if f is quadratic
so that H−1 exists, etc.

If f isn’t quadratic, keep pretending it is until we get close to θ∗,
when it will be nearly true
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Newton’s Method: The Algorithm

1 Start with guess for θ
2 While ((not too tired) and (making adequate progress))

1 Find gradient∇f (θ) and Hessian H(θ)
2 Set θ← θ−H(θ)−1∇f (θ)

3 Return final θ as approximation to θ∗

Like gradient descent, but with inverse Hessian giving the step-size
“This is about how far you can go with that gradient”
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Advantages and Disadvantages of Newton’s Method

Pro:
Step-sizes chosen adaptively through 2nd derivatives, much
harder to get zig-zagging, over-shooting, etc.
Also guaranteed to need O(ε−2) steps to get within ε of
optimum
Only O(log logε−1) for very nice functions
Typically many fewer iterations than gradient descent

Cons:
Hopeless if H doesn’t exist or isn’t invertible
Need to take O(p2) second derivatives plus p first derivatives
Need to solve Hθnew =Hθold−∇f (θold) for θnew
inverting H is O(p3), but cleverness gives O(p2) for solving
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Getting Around the Hessian

Want to use the Hessian to improve convergence
Don’t want to have to keep computing the Hessian at each step

Approaches:
Use knowledge of the system to get some approximation to the
Hessian, use that instead of taking derivatives (“Fisher scoring”)
Use only diagonal entries (p unmixed 2nd derivatives)
Use H(θ) at initial guess, hope H changes very slowly with θ
Re-compute H(θ) every k steps, k> 1
Fast, approximate updates to the Hessian at each step (BFGS)
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Curve-Fitting by Optimizing

We have data (x1,y1), (x2,y2), . . . (xn,yn)
We also have possible curves, r(x;θ)

e.g., r(x) = x ·θ
e.g., r(x) = θ1xθ2

e.g., r(x) =
∑q

j=1
θjbj(x) for fixed “basis” functions bj

Least-squares curve fitting:

θ̂= argmin
θ

1

n

n
∑

i=1

(yi− r(xi;θ))
2

“Robust” curve fitting:

θ̂= argmin
θ

1

n

n
∑

i=1

ψ(yi− r(xi;θ))
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Optimization in R: optim

optim(par,fn, gr, method, control, hessian)

fn function to be minimized; mandatory
par initial parameter guess; mandatory
gr gradient function; only needed for some methods

method defaults to a gradient-free method (“Nedler-Mead”),
could be BFGS (Newton-ish)

control optional list of control settings
(maximum iterations, scaling, tolerance for convergence, etc.)

hessian should the final Hessian be returned? default FALSE

Return contains the location ($par) and the value ($val) of the
optimum, diagnostics, possibly $hessian
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mse <- function(theta) { mean((gmp$pcgmp - theta[1]*gmp$pop^theta[2])^2) }
grad.mse <- function(theta) { grad(func=mse,x=theta) }
theta0=c(5000,0.15)
fit1 <- optim(theta0,mse,grad.mse,method="BFGS",hessian=TRUE)
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fit1: Newton-ish BFGS method

Run-time: 0.027 seconds

> fit1
$par
[1] 6493.2563738 0.1276921

$value
[1] 61853983

$counts
function gradient

63 11

$convergence
[1] 0

$message
NULL

$hessian
[,1] [,2]

[1,] 5.25021e+01 4422070
[2,] 4.42207e+06 375729087977
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nls

optim is a general-purpose optimizer
nls is for nonlinear least squares

nls(formula, data, start, control, [[many other options]])

formula Mathematical expression with response variable,
predictor variable(s), and unknown parameter(s)

data Data frame with variable names matching formula

start Guess at parameters (optional)
control Like with optim (optional)

Returns an nls object, with fitted values, prediction methods, etc.
The default optimization is a version of Newton’s method
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fit2: Fitting the Same Model with nls

> fit2 <- nls(pcgmp~y0*pop^a,data=gmp,start=list(y0=5000,a=0.1))
> summary(fit2)

Formula: pcgmp ~ y0 * pop^a

Parameters:
Estimate Std. Error t value Pr(>|t|)

y0 6.494e+03 8.565e+02 7.582 2.87e-13 ***
a 1.277e-01 1.012e-02 12.612 < 2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 7886 on 364 degrees of freedom

Number of iterations to convergence: 5
Achieved convergence tolerance: 1.781e-07

We will see later where all the inferential statistics come from
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plot(pcgmp~pop,data=gmp)
pop.order <- order(gmp$pop)
lines(gmp$pop[pop.order],fitted(fit2)[pop.order])
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plot(pcgmp~pop,data=gmp)
pop.order <- order(gmp$pop)
lines(gmp$pop[pop.order],fitted(fit2)[pop.order])
curve(fit1$par[1]*x^fit1$par[2],add=TRUE,lty="dashed",col="blue")
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Summary

1 Trade-offs: complexity of iteration vs. number of iterations vs.
precision of approximation

Gradient descent: more complex iterations, more guarantees,
more adaptive
Newton: even more complex iterations, but few of them for
good functions

2 Start with pre-built code like optim, implement your own as
needed
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