
Statistical Computing (36-350)
Lecture 10: Optimization I: Basics

Cosma Shalizi

30 September 2013

36-350 Lecture 10

Agenda

Basics of optimization
Gradient descent
Newton’s method
Curve-fitting
R: optim, nls

READING: Recipes 13.1 and 13.2 in The R Cookbook
OPTIONAL READING: 1.1, 2.1 and 2.2 in Red Plenty

36-350 Lecture 10

Examples of Optimization Problems

Minimize mean-squared error of regression surface (Gauss, c. 1800)
Maximize likelihood of distribution (Fisher, c. 1918)
Maximize output of plywood from given supplies and factories
(Kantorovich, 1939)
Maximize output of tanks from given supplies and factories;
minimize number of bombing runs to destroy factory (c. 1939–1945)
Maximize return of portfolio for given volatility (Markowitz, 1950s)
Minimize cost of airline flight schedule (Kantorovich...)
Maximize reproductive fitness of an organism (Maynard Smith)

36-350 Lecture 10

Optimization Problems

Given an objective function f :D 7→R, find

θ∗ = argmin
θ

f (θ)

Basics: maximizing f is minimizing −f :

argmin
θ
−f (θ) = argmax

θ
f (θ)

If h is strictly increasing (e.g., log), then

argmin
θ

f (θ) = argmin
θ

h(f (θ))

36-350 Lecture 10

Optimization Problems

Given an objective function f :D 7→R, find

θ∗ = argmin
θ

f (θ)

Basics: maximizing f is minimizing −f :

argmin
θ
−f (θ) = argmax

θ
f (θ)

If h is strictly increasing (e.g., log), then

argmin
θ

f (θ) = argmin
θ

h(f (θ))

36-350 Lecture 10

Optimization Problems

Given an objective function f :D 7→R, find

θ∗ = argmin
θ

f (θ)

Basics: maximizing f is minimizing −f :

argmin
θ
−f (θ) = argmax

θ
f (θ)

If h is strictly increasing (e.g., log), then

argmin
θ

f (θ) = argmin
θ

h(f (θ))

36-350 Lecture 10

Considerations

Approximation: How close can we get to θ∗, and/or f (θ∗)?

Time complexity: How many computer steps does that take?
Varies with precision of approximation, niceness of f , size of D, size of data, method. . .

Most optimization algorithms use successive approximation, so
distinguish number of iterations from cost of each iteration

36-350 Lecture 10

Considerations

Approximation: How close can we get to θ∗, and/or f (θ∗)?
Time complexity: How many computer steps does that take?
Varies with precision of approximation, niceness of f , size of D, size of data, method. . .

Most optimization algorithms use successive approximation, so
distinguish number of iterations from cost of each iteration

36-350 Lecture 10

Considerations

Approximation: How close can we get to θ∗, and/or f (θ∗)?
Time complexity: How many computer steps does that take?
Varies with precision of approximation, niceness of f , size of D, size of data, method. . .

Most optimization algorithms use successive approximation, so
distinguish number of iterations from cost of each iteration

36-350 Lecture 10

As you remember from calculus. . .

Suppose x is one dimensional and f is smooth

If x∗ is an interior minimum /maximum / extremum point

df

dx

�

�

�

�

�

x=x∗
= 0

If x∗ a minimum,
d2f

dx2

�

�

�

�

�

x=x∗
> 0

36-350 Lecture 10

As you remember from calculus. . .

Suppose x is one dimensional and f is smooth
If x∗ is an interior minimum /maximum / extremum point

df

dx

�

�

�

�

�

x=x∗
= 0

If x∗ a minimum,
d2f

dx2

�

�

�

�

�

x=x∗
> 0

36-350 Lecture 10

As you remember from calculus. . .

Suppose x is one dimensional and f is smooth
If x∗ is an interior minimum /maximum / extremum point

df

dx

�

�

�

�

�

x=x∗
= 0

If x∗ a minimum,
d2f

dx2

�

�

�

�

�

x=x∗
> 0

36-350 Lecture 10

As you remember from calculus. . .

This all carries over to multiple dimensions:
At an interior extremum,

∇f (θ∗) = 0

At an interior minimum,

∇2f (θ∗)≥ 0

meaning for any vector v,

vT∇2f (θ∗)v≥ 0

∇2f = the Hessian, H
θ might just be a local minimum

36-350 Lecture 10

As you remember from calculus. . .

This all carries over to multiple dimensions:
At an interior extremum,

∇f (θ∗) = 0

At an interior minimum,

∇2f (θ∗)≥ 0

meaning for any vector v,

vT∇2f (θ∗)v≥ 0

∇2f = the Hessian, H

θ might just be a local minimum

36-350 Lecture 10

As you remember from calculus. . .

This all carries over to multiple dimensions:
At an interior extremum,

∇f (θ∗) = 0

At an interior minimum,

∇2f (θ∗)≥ 0

meaning for any vector v,

vT∇2f (θ∗)v≥ 0

∇2f = the Hessian, H
θ might just be a local minimum

36-350 Lecture 10

Gradients and Changes to f

f ′(x0) =
df

dx

�

�

�

�

�

x=x0

= lim
x→x0

f (x)− f (x0)

x− x0

f (x) ≈ f (x0)+ (x− x0)f
′(x0)

Locally, the function looks linear
To minimize a linear function, move down the slope
Multivariate version:

f (θ)≈ f (θ0)+ (θ−θ0) · ∇f (θ0)

∇f (θ0) points in the direction of fastest ascent at θ0

36-350 Lecture 10

Gradients and Changes to f

f ′(x0) =
df

dx

�

�

�

�

�

x=x0

= lim
x→x0

f (x)− f (x0)

x− x0

f (x) ≈ f (x0)+ (x− x0)f
′(x0)

Locally, the function looks linear
To minimize a linear function, move down the slope
Multivariate version:

f (θ)≈ f (θ0)+ (θ−θ0) · ∇f (θ0)

∇f (θ0) points in the direction of fastest ascent at θ0

36-350 Lecture 10

Gradients and Changes to f

f ′(x0) =
df

dx

�

�

�

�

�

x=x0

= lim
x→x0

f (x)− f (x0)

x− x0

f (x) ≈ f (x0)+ (x− x0)f
′(x0)

Locally, the function looks linear

To minimize a linear function, move down the slope
Multivariate version:

f (θ)≈ f (θ0)+ (θ−θ0) · ∇f (θ0)

∇f (θ0) points in the direction of fastest ascent at θ0

36-350 Lecture 10

Gradients and Changes to f

f ′(x0) =
df

dx

�

�

�

�

�

x=x0

= lim
x→x0

f (x)− f (x0)

x− x0

f (x) ≈ f (x0)+ (x− x0)f
′(x0)

Locally, the function looks linear
To minimize a linear function, move down the slope

Multivariate version:

f (θ)≈ f (θ0)+ (θ−θ0) · ∇f (θ0)

∇f (θ0) points in the direction of fastest ascent at θ0

36-350 Lecture 10

Gradients and Changes to f

f ′(x0) =
df

dx

�

�

�

�

�

x=x0

= lim
x→x0

f (x)− f (x0)

x− x0

f (x) ≈ f (x0)+ (x− x0)f
′(x0)

Locally, the function looks linear
To minimize a linear function, move down the slope
Multivariate version:

f (θ)≈ f (θ0)+ (θ−θ0) · ∇f (θ0)

∇f (θ0) points in the direction of fastest ascent at θ0

36-350 Lecture 10

Gradient Descent

1 Start with initial guess for θ, step-size η
2 While ((not too tired) and (making adequate progress))

1 Find gradient∇f (θ)
2 Set θ← θ−η∇f (θ)

3 Return final θ as approximate θ∗

Variations: adaptively adjust η to make sure of improvement
or search along the gradient direction for minimum

36-350 Lecture 10

Gradient Descent

1 Start with initial guess for θ, step-size η
2 While ((not too tired) and (making adequate progress))

1 Find gradient∇f (θ)
2 Set θ← θ−η∇f (θ)

3 Return final θ as approximate θ∗

Variations: adaptively adjust η to make sure of improvement
or search along the gradient direction for minimum

36-350 Lecture 10

Pros and Cons of Gradient Descent

Pro:
Moves in direction of greatest immediate improvement
If η is small enough, gets to a local minimum eventually, and
then stops

Cons:
“Sufficiently small” η can be really, really small
Slowness or zig-zagging if components of∇f are very different
sizes

How much work do we need?

36-350 Lecture 10

Pros and Cons of Gradient Descent

Pro:
Moves in direction of greatest immediate improvement
If η is small enough, gets to a local minimum eventually, and
then stops

Cons:
“Sufficiently small” η can be really, really small
Slowness or zig-zagging if components of∇f are very different
sizes

How much work do we need?

36-350 Lecture 10

Pros and Cons of Gradient Descent

Pro:
Moves in direction of greatest immediate improvement
If η is small enough, gets to a local minimum eventually, and
then stops

Cons:
“Sufficiently small” η can be really, really small
Slowness or zig-zagging if components of∇f are very different
sizes

How much work do we need?

36-350 Lecture 10

Scaling

Big-O notation:
h(x) =O(g(x))

means

lim
x→∞

h(x)

g(x)
= c

for some c 6= 0

e.g., x2− 5000x+ 123456778=O(x2)

ex/(1+ ex) =O(1)

Useful to look at over-all scaling, hiding details
Also done when the limit is x→ 0

36-350 Lecture 10

Scaling

Big-O notation:
h(x) =O(g(x))

means

lim
x→∞

h(x)

g(x)
= c

for some c 6= 0
e.g., x2− 5000x+ 123456778=O(x2)

ex/(1+ ex) =O(1)

Useful to look at over-all scaling, hiding details
Also done when the limit is x→ 0

36-350 Lecture 10

Scaling

Big-O notation:
h(x) =O(g(x))

means

lim
x→∞

h(x)

g(x)
= c

for some c 6= 0
e.g., x2− 5000x+ 123456778=O(x2)

ex/(1+ ex) =O(1)

Useful to look at over-all scaling, hiding details

Also done when the limit is x→ 0

36-350 Lecture 10

Scaling

Big-O notation:
h(x) =O(g(x))

means

lim
x→∞

h(x)

g(x)
= c

for some c 6= 0
e.g., x2− 5000x+ 123456778=O(x2)

ex/(1+ ex) =O(1)

Useful to look at over-all scaling, hiding details
Also done when the limit is x→ 0

36-350 Lecture 10

How Much Work is Gradient Descent?

Pro:
For nice f , f (θ)≤ f (θ∗)+ ε in O(ε−2) iterations
For very nice f , only O(logε−1) iterations

To get∇f (θ), take p derivatives, ∴ each iteration costs O(p)
Con:

Taking derivatives can slow down as data grows — each
iteration might really be O(np)

36-350 Lecture 10

Taylor Series

What if we do a quadratic approximation to f ?

f (x)≈ f (x0)+ (x− x0)f
′(x0)+

1

2
(x− x0)

2f ′′(x0)

Special cases of general idea of Taylor approximation

Simplifies if x0 is a minimum since then f ′(x0) = 0:

f (x)≈ f (x0)+
1

2
(x− x0)

2f ′′(x0)

Near a minimum, smooth functions look like parabolas
Carries over to the multivariate case:

f (θ∗)≈ f (θ)+ (θ∗−θ)∇f (θ)+
1

2
(θ∗−θ)T H(θ)(θ∗−θ)

36-350 Lecture 10

Taylor Series

What if we do a quadratic approximation to f ?

f (x)≈ f (x0)+ (x− x0)f
′(x0)

+
1

2
(x− x0)

2f ′′(x0)

Special cases of general idea of Taylor approximation

Simplifies if x0 is a minimum since then f ′(x0) = 0:

f (x)≈ f (x0)+
1

2
(x− x0)

2f ′′(x0)

Near a minimum, smooth functions look like parabolas
Carries over to the multivariate case:

f (θ∗)≈ f (θ)+ (θ∗−θ)∇f (θ)+
1

2
(θ∗−θ)T H(θ)(θ∗−θ)

36-350 Lecture 10

Taylor Series

What if we do a quadratic approximation to f ?

f (x)≈ f (x0)+ (x− x0)f
′(x0)+

1

2
(x− x0)

2f ′′(x0)

Special cases of general idea of Taylor approximation

Simplifies if x0 is a minimum since then f ′(x0) = 0:

f (x)≈ f (x0)+
1

2
(x− x0)

2f ′′(x0)

Near a minimum, smooth functions look like parabolas
Carries over to the multivariate case:

f (θ∗)≈ f (θ)+ (θ∗−θ)∇f (θ)+
1

2
(θ∗−θ)T H(θ)(θ∗−θ)

36-350 Lecture 10

Taylor Series

What if we do a quadratic approximation to f ?

f (x)≈ f (x0)+ (x− x0)f
′(x0)+

1

2
(x− x0)

2f ′′(x0)

Special cases of general idea of Taylor approximation

Simplifies if x0 is a minimum since then f ′(x0) = 0:

f (x)≈ f (x0)+
1

2
(x− x0)

2f ′′(x0)

Near a minimum, smooth functions look like parabolas

Carries over to the multivariate case:

f (θ∗)≈ f (θ)+ (θ∗−θ)∇f (θ)+
1

2
(θ∗−θ)T H(θ)(θ∗−θ)

36-350 Lecture 10

Taylor Series

What if we do a quadratic approximation to f ?

f (x)≈ f (x0)+ (x− x0)f
′(x0)+

1

2
(x− x0)

2f ′′(x0)

Special cases of general idea of Taylor approximation

Simplifies if x0 is a minimum since then f ′(x0) = 0:

f (x)≈ f (x0)+
1

2
(x− x0)

2f ′′(x0)

Near a minimum, smooth functions look like parabolas
Carries over to the multivariate case:

f (θ∗)≈ f (θ)+ (θ∗−θ)∇f (θ)+
1

2
(θ∗−θ)T H(θ)(θ∗−θ)

36-350 Lecture 10

Minimizing a Quadratic

If we know
f (x) = ax2+ bx+ c

we minimize exactly:

2ax∗+ b = 0

x∗ =
−b

2a

If
f (x) = a(x− x0)

2+ b(x− x0)+ c

then

x∗ = x0−
1

2

b

a

36-350 Lecture 10

Minimizing a Quadratic

If we know
f (x) = ax2+ bx+ c

we minimize exactly:

2ax∗+ b = 0

x∗ =
−b

2a

If
f (x) = a(x− x0)

2+ b(x− x0)+ c

then

x∗ = x0−
1

2

b

a

36-350 Lecture 10

Newton’s Method

Use a Taylor expansion:

f (θ∗)≈ f (θ)+ (θ∗−θ)∇f (θ)+
1

2
(θ∗−θ)T H(θ)(θ∗−θ)

Take gradient with respect to θ∗ and set to zero:

0 = ∇f (θ)+H(θ)(θ∗−θ)
θ∗ = θ− (H(θ))−1∇f (θ)

Works exactly if f is quadratic
so that H−1 exists, etc.

If f isn’t quadratic, keep pretending it is until we get close to θ∗,
when it will be nearly true

36-350 Lecture 10

Newton’s Method

Use a Taylor expansion:

f (θ∗)≈ f (θ)+ (θ∗−θ)∇f (θ)+
1

2
(θ∗−θ)T H(θ)(θ∗−θ)

Take gradient with respect to θ∗ and set to zero:

0 = ∇f (θ)+H(θ)(θ∗−θ)
θ∗ = θ− (H(θ))−1∇f (θ)

Works exactly if f is quadratic
so that H−1 exists, etc.

If f isn’t quadratic, keep pretending it is until we get close to θ∗,
when it will be nearly true

36-350 Lecture 10

Newton’s Method

Use a Taylor expansion:

f (θ∗)≈ f (θ)+ (θ∗−θ)∇f (θ)+
1

2
(θ∗−θ)T H(θ)(θ∗−θ)

Take gradient with respect to θ∗ and set to zero:

0 = ∇f (θ)+H(θ)(θ∗−θ)
θ∗ = θ− (H(θ))−1∇f (θ)

Works exactly if f is quadratic
so that H−1 exists, etc.

If f isn’t quadratic, keep pretending it is until we get close to θ∗,
when it will be nearly true

36-350 Lecture 10

Newton’s Method: The Algorithm

1 Start with guess for θ
2 While ((not too tired) and (making adequate progress))

1 Find gradient∇f (θ) and Hessian H(θ)
2 Set θ← θ−H(θ)−1∇f (θ)

3 Return final θ as approximation to θ∗

Like gradient descent, but with inverse Hessian giving the step-size
“This is about how far you can go with that gradient”

36-350 Lecture 10

Advantages and Disadvantages of Newton’s Method

Pro:
Step-sizes chosen adaptively through 2nd derivatives, much
harder to get zig-zagging, over-shooting, etc.
Also guaranteed to need O(ε−2) steps to get within ε of
optimum
Only O(log logε−1) for very nice functions
Typically many fewer iterations than gradient descent

Cons:
Hopeless if H doesn’t exist or isn’t invertible
Need to take O(p2) second derivatives plus p first derivatives
Need to solve Hθnew =Hθold−∇f (θold) for θnew
inverting H is O(p3), but cleverness gives O(p2) for solving

36-350 Lecture 10

Advantages and Disadvantages of Newton’s Method

Pro:
Step-sizes chosen adaptively through 2nd derivatives, much
harder to get zig-zagging, over-shooting, etc.
Also guaranteed to need O(ε−2) steps to get within ε of
optimum
Only O(log logε−1) for very nice functions
Typically many fewer iterations than gradient descent

Cons:
Hopeless if H doesn’t exist or isn’t invertible
Need to take O(p2) second derivatives plus p first derivatives
Need to solve Hθnew =Hθold−∇f (θold) for θnew
inverting H is O(p3), but cleverness gives O(p2) for solving

36-350 Lecture 10

Getting Around the Hessian

Want to use the Hessian to improve convergence
Don’t want to have to keep computing the Hessian at each step

Approaches:
Use knowledge of the system to get some approximation to the
Hessian, use that instead of taking derivatives (“Fisher scoring”)
Use only diagonal entries (p unmixed 2nd derivatives)
Use H(θ) at initial guess, hope H changes very slowly with θ
Re-compute H(θ) every k steps, k> 1
Fast, approximate updates to the Hessian at each step (BFGS)

36-350 Lecture 10

Getting Around the Hessian

Want to use the Hessian to improve convergence
Don’t want to have to keep computing the Hessian at each step
Approaches:

Use knowledge of the system to get some approximation to the
Hessian, use that instead of taking derivatives (“Fisher scoring”)
Use only diagonal entries (p unmixed 2nd derivatives)
Use H(θ) at initial guess, hope H changes very slowly with θ
Re-compute H(θ) every k steps, k> 1
Fast, approximate updates to the Hessian at each step (BFGS)

36-350 Lecture 10

Curve-Fitting by Optimizing

We have data (x1,y1), (x2,y2), . . . (xn,yn)
We also have possible curves, r(x;θ)

e.g., r(x) = x ·θ
e.g., r(x) = θ1xθ2

e.g., r(x) =
∑q

j=1
θjbj(x) for fixed “basis” functions bj

Least-squares curve fitting:

θ̂= argmin
θ

1

n

n
∑

i=1

(yi− r(xi;θ))
2

“Robust” curve fitting:

θ̂= argmin
θ

1

n

n
∑

i=1

ψ(yi− r(xi;θ))

36-350 Lecture 10

Curve-Fitting by Optimizing

We have data (x1,y1), (x2,y2), . . . (xn,yn)
We also have possible curves, r(x;θ)
e.g., r(x) = x ·θ

e.g., r(x) = θ1xθ2

e.g., r(x) =
∑q

j=1
θjbj(x) for fixed “basis” functions bj

Least-squares curve fitting:

θ̂= argmin
θ

1

n

n
∑

i=1

(yi− r(xi;θ))
2

“Robust” curve fitting:

θ̂= argmin
θ

1

n

n
∑

i=1

ψ(yi− r(xi;θ))

36-350 Lecture 10

Curve-Fitting by Optimizing

We have data (x1,y1), (x2,y2), . . . (xn,yn)
We also have possible curves, r(x;θ)
e.g., r(x) = x ·θ
e.g., r(x) = θ1xθ2

e.g., r(x) =
∑q

j=1
θjbj(x) for fixed “basis” functions bj

Least-squares curve fitting:

θ̂= argmin
θ

1

n

n
∑

i=1

(yi− r(xi;θ))
2

“Robust” curve fitting:

θ̂= argmin
θ

1

n

n
∑

i=1

ψ(yi− r(xi;θ))

36-350 Lecture 10

Curve-Fitting by Optimizing

We have data (x1,y1), (x2,y2), . . . (xn,yn)
We also have possible curves, r(x;θ)
e.g., r(x) = x ·θ
e.g., r(x) = θ1xθ2

e.g., r(x) =
∑q

j=1
θjbj(x) for fixed “basis” functions bj

Least-squares curve fitting:

θ̂= argmin
θ

1

n

n
∑

i=1

(yi− r(xi;θ))
2

“Robust” curve fitting:

θ̂= argmin
θ

1

n

n
∑

i=1

ψ(yi− r(xi;θ))

36-350 Lecture 10

Curve-Fitting by Optimizing

We have data (x1,y1), (x2,y2), . . . (xn,yn)
We also have possible curves, r(x;θ)
e.g., r(x) = x ·θ
e.g., r(x) = θ1xθ2

e.g., r(x) =
∑q

j=1
θjbj(x) for fixed “basis” functions bj

Least-squares curve fitting:

θ̂= argmin
θ

1

n

n
∑

i=1

(yi− r(xi;θ))
2

“Robust” curve fitting:

θ̂= argmin
θ

1

n

n
∑

i=1

ψ(yi− r(xi;θ))

36-350 Lecture 10

Curve-Fitting by Optimizing

We have data (x1,y1), (x2,y2), . . . (xn,yn)
We also have possible curves, r(x;θ)
e.g., r(x) = x ·θ
e.g., r(x) = θ1xθ2

e.g., r(x) =
∑q

j=1
θjbj(x) for fixed “basis” functions bj

Least-squares curve fitting:

θ̂= argmin
θ

1

n

n
∑

i=1

(yi− r(xi;θ))
2

“Robust” curve fitting:

θ̂= argmin
θ

1

n

n
∑

i=1

ψ(yi− r(xi;θ))

36-350 Lecture 10

Optimization in R: optim

optim(par,fn, gr, method, control, hessian)

fn function to be minimized; mandatory
par initial parameter guess; mandatory
gr gradient function; only needed for some methods

method defaults to a gradient-free method (“Nedler-Mead”),
could be BFGS (Newton-ish)

control optional list of control settings
(maximum iterations, scaling, tolerance for convergence, etc.)

hessian should the final Hessian be returned? default FALSE

Return contains the location ($par) and the value ($val) of the
optimum, diagnostics, possibly $hessian

36-350 Lecture 10

mse <- function(theta) { mean((gmp$pcgmp - theta[1]*gmp$pop^theta[2])^2) }
grad.mse <- function(theta) { grad(func=mse,x=theta) }
theta0=c(5000,0.15)
fit1 <- optim(theta0,mse,grad.mse,method="BFGS",hessian=TRUE)

36-350 Lecture 10

fit1: Newton-ish BFGS method

Run-time: 0.027 seconds

> fit1
$par
[1] 6493.2563738 0.1276921

$value
[1] 61853983

$counts
function gradient

63 11

$convergence
[1] 0

$message
NULL

$hessian
[,1] [,2]

[1,] 5.25021e+01 4422070
[2,] 4.42207e+06 375729087977

36-350 Lecture 10

nls

optim is a general-purpose optimizer
nls is for nonlinear least squares

nls(formula, data, start, control, [[many other options]])

formula Mathematical expression with response variable,
predictor variable(s), and unknown parameter(s)

data Data frame with variable names matching formula

start Guess at parameters (optional)
control Like with optim (optional)

Returns an nls object, with fitted values, prediction methods, etc.
The default optimization is a version of Newton’s method

36-350 Lecture 10

fit2: Fitting the Same Model with nls

> fit2 <- nls(pcgmp~y0*pop^a,data=gmp,start=list(y0=5000,a=0.1))
> summary(fit2)

Formula: pcgmp ~ y0 * pop^a

Parameters:
Estimate Std. Error t value Pr(>|t|)

y0 6.494e+03 8.565e+02 7.582 2.87e-13 ***
a 1.277e-01 1.012e-02 12.612 < 2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 7886 on 364 degrees of freedom

Number of iterations to convergence: 5
Achieved convergence tolerance: 1.781e-07

We will see later where all the inferential statistics come from

36-350 Lecture 10

5e+04 1e+05 2e+05 5e+05 1e+06 2e+06 5e+06 1e+07 2e+07

20
00
0

30
00
0

40
00
0

50
00
0

60
00
0

70
00
0

80
00
0

pop

pc
gm
p

plot(pcgmp~pop,data=gmp)

36-350 Lecture 10

5e+04 1e+05 2e+05 5e+05 1e+06 2e+06 5e+06 1e+07 2e+07

20
00
0

30
00
0

40
00
0

50
00
0

60
00
0

70
00
0

80
00
0

pop

pc
gm
p

plot(pcgmp~pop,data=gmp)
pop.order <- order(gmp$pop)
lines(gmp$pop[pop.order],fitted(fit2)[pop.order])

36-350 Lecture 10

5e+04 1e+05 2e+05 5e+05 1e+06 2e+06 5e+06 1e+07 2e+07

20
00
0

30
00
0

40
00
0

50
00
0

60
00
0

70
00
0

80
00
0

pop

pc
gm
p

plot(pcgmp~pop,data=gmp)
pop.order <- order(gmp$pop)
lines(gmp$pop[pop.order],fitted(fit2)[pop.order])
curve(fit1$par[1]*x^fit1$par[2],add=TRUE,lty="dashed",col="blue")

36-350 Lecture 10

Summary

1 Trade-offs: complexity of iteration vs. number of iterations vs.
precision of approximation

Gradient descent: more complex iterations, more guarantees,
more adaptive
Newton: even more complex iterations, but few of them for
good functions

2 Start with pre-built code like optim, implement your own as
needed

36-350 Lecture 10

