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Agenda

Chaining together random variables
Markov chains
The long run of Markov chains

READING: Handouts on the class webpage

36-350 Lecture 15



Markov Chains
Invariance and the Long Run

Multiple Random Variables

rnorm, runif, etc., give independent and identically distributed
(IID) random variables
Most stochastic models don’t call for IID random variables
Varying distributions, dependence

How do we generate such things?
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Putting the Variables in Order

Try to arrange the variables in order of priority and/or time
Who someone votes for might change with their age or their race, but not vice versa

Generate the exogenous variables first
Then all the endogenous variables which only depend on
exogenous ones
Then all the variables which depend only on first-generation
endogenous ones, etc.
You’ll see more of this with graphical models in 36-402
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Time Series

Can have a sequence of variables going on in time, X1,X2, . . .Xn
Earlier ones can cause later but not other way

p(X1,X2, . . .Xn) = p(X1)p(X2|X1)p(X3|X2,X1) . . .p(Xn|Xn−1,Xn−2, . . .X1)
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Markov Property
Variations on the Theme

Markov Processes

The Markov property: Given the current state Xt, earlier states
Xt−1,Xt−2, . . . are irrelevant to the future states Xt+1,Xt+2, . . .

⇔

p(X1,X2, . . .Xn) = p(X1)p(X2|X1)p(X3|X2) . . .p(Xn|Xn−1)

This is an assumption, not a law of nature
To simulate a Markov chain, we need to

Draw the initial state X1 from p(X1)
Draw Xt from p(Xt|Xt−1)— inherently sequential
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Markov Property
Variations on the Theme

Inputs: number of steps, drawing function for initial distribution,
drawing function for transition distribution

rmarkov <- function(n,rinitial,rtransition) {
x <- vector(length=n)
x[1] <- rinitial()
for (t in 2:n) {

x[t] <- rtransition(x[t-1])
}
return(x)

}
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Markov Property
Variations on the Theme

Markov Chains

Each Xt is discrete, not continuous
Represent p(Xt|Xt−1) in a transition matrix,
qij = Pr (Xt = j|Xt−1 = i)
Each row sums to 1 (stochastic matrix)

Represent p(X1) as a vector p0, summing to 1
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Markov Property
Variations on the Theme

Graph vs. matrix

1

0.5

20.5
0.75

0.25

⇔ q=
�

0.5 0.5
0.75 0.25

�

36-350 Lecture 15



Markov Chains
Invariance and the Long Run

Markov Property
Variations on the Theme

Your Basic Markov Chain

rmarkovchain <- function(n,p0,q) {
k <- length(p0)
stopifnot(k==nrow(q),k==ncol(q),all.equal(rowSums(q),rep(1,time=k)))
rinitial <- function() { sample(1:k,size=1,prob=p0) }
rtransition <- function(x) { sample(1:k,size=1,prob=q[x,]) }
return(rmarkov(n,rinitial,rtransition))

}

It runs:

> x <- rmarkovchain(1e4,c(0.5,0.5),q)
> head(x)
[1] 1 1 2 1 2 2

How do we know it works?
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Markov Property
Variations on the Theme

> ones <- which(x[-1e4]==1)
> twos <- which(x[-1e4]==2)
> signif(table(x[ones+1])/length(ones),3)

1 2
0.489 0.511
> signif(table(x[twos+1])/length(twos),3)

1 2
0.752 0.248

vs. (0.5,0.5) and (0.75,0.25) ideally
Uses law of large numbers + conditional independence
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Markov Property
Variations on the Theme

Hidden Markov Model (HMM)

Xt is Markov, but we see Yt = h(Xt)+noise, not Markov
e.g.

> means <- c(10,-10)
> sds <- c(1,5)
> y <- rnorm(n=length(x),mean=means[x],sd=sds[x])
> signif(head(y),3)
[1] 11.00 10.00 -10.60 11.80 -16.30 -2.41

(noise and distortion might be much more complicated)
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Markov Property
Variations on the Theme

Variations

Interacting/coupled Markov chains: transition probability for chain
1 depends on its state and chain 2’s state

Continuous-time Markov chain: stay in the state for a random time,
with exponential distribution, then take a chain step
Semi-Markov chain: like CTMC, but non-exponential holding times
Chain with complete connections: as in HMM, Yt = h(Xt)+noise,
but then Xt+1 = r(Xt,Yt) (with no noise)
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Invariant Distributions

p1 = p0q
p2 = p1q= p0q2

pt = pt−1q= p0qt

Fact: If the chain can go from any state to any other and back, and
there are no fixed periods, then

pt→ p∞ = p∞q

p∞ = left eigenvector of q of eigenvalue 1
This is the invariant distribution
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> table(rmarkovchain(1e4,c(0.5,0.5),q))
1 2

5999 4001
> table(rmarkovchain(1e4,c(0.5,0.5),q))

1 2
5996 4004
> table(rmarkovchain(1e4,c(0,1),q))

1 2
5989 4011
> table(rmarkovchain(1e4,c(1,0),q))

1 2
5996 4004
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> eigen(t(q))
$values
[1] 1.00 -0.25

$vectors
[,1] [,2]

[1,] 0.8320503 -0.7071068
[2,] 0.5547002 0.7071068

> eigen(t(q))$vectors[,1]/sum(eigen(t(q))$vectors[,1])
[1] 0.6 0.4
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The Long Run of a Markov Chain

In the long run, all the Xt come close to having the same
distribution, the invariant distribution
They’re still dependent, though
Ergodic theorem:

1

n

n
∑

t=1
f (Xt)→

∑

x
p∞(x)f (x) =Ep∞

[f (X)]

time averages converge on expected values
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Summary

1 Break complicated simulations into many draws from basic
distributions

Make later draws depend on earlier ones
Use the Markov property when you can

2 Markov chains are the most basic non-trivial stochastic process
3 In the long run, Markov chains converge on their invariant

distribution
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