Markov Chains Invariance and the Long Run

Statistical Computing (36-350) Lecture 15: Simulation II: Markov Chains

Cosma Shalizi

16 October 2013

- Chaining together random variables
- Markov chains
- The long run of Markov chains

READING: Handouts on the class webpage

Markov Chains Invariance and the Long Run

Multiple Random Variables

rnorm, runif, etc., give independent and identically distributed (IID) random variables Most stochastic models don't call for IID random variables Varying distributions, dependence How do we generate such things?

Try to arrange the variables in order of priority and/or time Who someone votes for might change with their age or their race, but not vice versa

Try to arrange the variables in order of priority and/or time Who someone votes for might change with their age or their race, but not vice versa Generate the **exogenous** variables first

Try to arrange the variables in order of priority and/or time Who someone votes for might change with their age or their race, but not vice versa Generate the **exogenous** variables first Then all the **endogenous** variables which only depend on exogenous ones

Try to arrange the variables in order of priority and/or time Who someone votes for might change with their age or their race, but not vice versa Generate the **exogenous** variables first Then all the **endogenous** variables which only depend on exogenous ones Then all the variables which depend only on first-generation endogenous ones, etc.

Try to arrange the variables in order of priority and/or time Who someone votes for might change with their age or their race, but not vice versa Generate the **exogenous** variables first Then all the **endogenous** variables which only depend on exogenous ones Then all the variables which depend only on first-generation endogenous ones, etc.

You'll see more of this with graphical models in 36-402

Can have a sequence of variables going on in time, $X_1, X_2, ..., X_n$ Earlier ones can cause later but not other way

$$p(X_1, X_2, \dots, X_n) = p(X_1)p(X_2|X_1)p(X_3|X_2, X_1)\dots p(X_n|X_{n-1}, X_{n-2}, \dots, X_1)$$

Markov Processes

The **Markov property:** Given the current **state** X_t , earlier states X_{t-1}, X_{t-2}, \ldots are irrelevant to the future states X_{t+1}, X_{t+2}, \ldots

▶ ★ 臣 ▶ …

Markov Processes

The **Markov property:** Given the current **state** X_t , earlier states X_{t-1}, X_{t-2}, \ldots are irrelevant to the future states X_{t+1}, X_{t+2}, \ldots

 $p(X_1, X_2, \dots, X_n) = p(X_1)p(X_2|X_1)p(X_3|X_2)\dots p(X_n|X_{n-1})$

イロト イ理ト イヨト イヨト

Markov Processes

The **Markov property:** Given the current **state** X_t , earlier states X_{t-1}, X_{t-2}, \ldots are irrelevant to the future states X_{t+1}, X_{t+2}, \ldots

$$p(X_1, X_2, \dots, X_n) = p(X_1)p(X_2|X_1)p(X_3|X_2)\dots p(X_n|X_{n-1})$$

This is an assumption, not a law of nature

The **Markov property:** Given the current **state** X_t , earlier states X_{t-1}, X_{t-2}, \ldots are irrelevant to the future states X_{t+1}, X_{t+2}, \ldots

$$p(X_1, X_2, \dots, X_n) = p(X_1)p(X_2|X_1)p(X_3|X_2)\dots p(X_n|X_{n-1})$$

This is an *assumption*, not a law of nature To simulate a Markov chain, we need to

- Draw the initial state X_1 from $p(X_1)$
- Draw X_t from $p(X_t|X_{t-1})$ inherently sequential

Inputs: number of steps, drawing function for initial distribution, drawing function for transition distribution

```
rmarkov <- function(n,rinitial,rtransition) {
  x <- vector(length=n)
  x[1] <- rinitial()
  for (t in 2:n) {
    x[t] <- rtransition(x[t-1])
  }
  return(x)
}</pre>
```

Markov Chains

Each X_t is discrete, not continuous Represent $p(X_t|X_{t-1})$ in a **transition matrix**, $\mathbf{q}_{ij} = \Pr(X_t = j|X_{t-1} = i)$ Each row sums to 1 (**stochastic matrix**)

Markov Chains

Each X_t is discrete, not continuous Represent $p(X_t|X_{t-1})$ in a **transition matrix**, $\mathbf{q}_{ij} = \Pr(X_t = j|X_{t-1} = i)$ Each row sums to 1 (**stochastic matrix**) Represent $p(X_1)$ as a vector p_0 , summing to 1

Graph vs. matrix

・ロト ・回ト ・ヨト ・ヨト

2

Markov Chains Invariance and the Long Run Markov Property Variations on the Theme

Your Basic Markov Chain

```
rmarkovchain <- function(n,p0,q) {
    k <- length(p0)
    stopifnot(k==nrow(q),k==ncol(q),all.equal(rowSums(q),rep(1,time=k)))
    rinitial <- function() { sample(1:k,size=1,prob=p0) }
    rtransition <- function(x) { sample(1:k,size=1,prob=q[x,]) }
    return(rmarkov(n,rinitial,rtransition))</pre>
```

}

→ < 글→

Markov Chains Invariance and the Long Run Markov Property Variations on the Theme

Your Basic Markov Chain

```
rmarkovchain <- function(n,p0,q) {
    k <- length(p0)
    stopifnot(k==nrow(q),k==ncol(q),all.equal(rowSums(q),rep(1,time=k)))
    rinitial <- function() { sample(1:k,size=1,prob=p0) }
    rtransition <- function(x) { sample(1:k,size=1,prob=q[x,]) }
    return(rmarkov(n,rinitial,rtransition))
}</pre>
```

It runs:

```
> x <- rmarkovchain(1e4,c(0.5,0.5),q)
> head(x)
[1] 1 1 2 1 2 2
```

How do we know it works?

vs. (0.5, 0.5) and (0.75, 0.25) ideally Uses law of large numbers + conditional independence Markov Chains invariance and the Long Run Markov Property Variations on the Theme

Hidden Markov Model (HMM)

```
X_t is Markov, but we see Y_t = h(X_t) + noise, not Markov e.g.
```

```
> means <- c(10,-10)
> sds <- c(1,5)
> y <- rnorm(n=length(x),mean=means[x],sd=sds[x])
> signif(head(y),3)
[1] 11.00 10.00 -10.60 11.80 -16.30 -2.41
```

(noise and distortion might be much more complicated)

< 三→

Variations

Interacting/coupled Markov chains: transition probability for chain 1 depends on its state and chain 2's state

Interacting/coupled Markov chains: transition probability for chain 1 depends on its state and chain 2's state Continuous-time Markov chain: stay in the state for a random time, with exponential distribution, then take a chain step Interacting/coupled Markov chains: transition probability for chain 1 depends on its state and chain 2's state Continuous-time Markov chain: stay in the state for a random time, with exponential distribution, then take a chain step Semi-Markov chain: like CTMC, but non-exponential holding times Interacting/coupled Markov chains: transition probability for chain 1 depends on its state and chain 2's state Continuous-time Markov chain: stay in the state for a random time, with exponential distribution, then take a chain step Semi-Markov chain: like CTMC, but non-exponential holding times Chain with complete connections: as in HMM, $Y_t = h(X_t) + \text{noise}$, but then $X_{t+1} = r(X_t, Y_t)$ (with no noise)

Invariant Distributions

$$p_1 = p_0 \mathbf{q}$$

$$p_2 = p_1 \mathbf{q} = p_0 \mathbf{q}^2$$

$$p_t = p_{t-1} \mathbf{q} = p_0 \mathbf{q}^t$$

Fact: If the chain can go from any state to any other and back, and there are no fixed periods, then

$$p_t \to p_\infty = p_\infty \mathbf{q}$$

 $p_{\infty} =$ left eigenvector of **q** of eigenvalue 1 This is the **invariant distribution**

```
> table(rmarkovchain(1e4,c(0.5,0.5),q))
```

```
1
        2
5999 4001
> table(rmarkovchain(1e4,c(0.5,0.5),q))
        2
   1
5996 4004
> table(rmarkovchain(1e4,c(0,1),q))
   1
        2
5989 4011
> table(rmarkovchain(1e4,c(1,0),q))
   1
        2
5996 4004
```

< 三→ -

```
> eigen(t(q))
$values
[1] 1.00 -0.25
```

\$vectors
 [,1] [,2]
[1,] 0.8320503 -0.7071068
[2,] 0.5547002 0.7071068

> eigen(t(q))\$vectors[,1]/sum(eigen(t(q))\$vectors[,1])
[1] 0.6 0.4

The Long Run of a Markov Chain

In the long run, all the X_t come close to having the same distribution, the invariant distribution They're still dependent, though **Ergodic theorem**:

$$\frac{1}{n}\sum_{t=1}^{n}f(X_{t}) \to \sum_{x}p_{\infty}(x)f(x) = \mathbb{E}_{p_{\infty}}[f(X)]$$

time averages converge on expected values

- Break complicated simulations into many draws from basic distributions
 - Make later draws depend on earlier ones
 - Use the Markov property when you can
- Ø Markov chains are the most basic non-trivial stochastic process
- In the long run, Markov chains converge on their invariant distribution