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Agenda

Monte Carlo approximation of integrals and expectations
The rejection method and importance sampling
Markov Chain Monte Carlo

READING: Handouts on the class webpage
OPTIONAL READING: Geyer, “Practical Markov Chain Monte
Carlo”, Statistical Science 7 (1992): 473–483;
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Monte Carlo
Rejection and Importance

Markov Chain Monte Carlo

Why Take Integrals Anyway?
Monte Carlo Converges Rapidly

Random Samples and Integrals

Law of large numbers: if X1,X2, . . .Xn all IID with p.d.f. p,

1

n

n
∑

i=1

f (Xi)→Ep[f (X)] =
∫

f (x)p(x)dx

The Monte Carlo principle: to find
∫

g(x)dx, draw from p and take
the sample mean of f (x) = g(x)/p(x)
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Markov Chain Monte Carlo

Why Take Integrals Anyway?
Monte Carlo Converges Rapidly

Examples

Buffon’s needle (homework!)

Area of a complicated shape C: draw X uniformly from box around
C, take average of 1C(X)
Any expectation value, variance, . . .
Anything your other classes teach you as integrals or expectations:
significance levels, risk of portfolios, revenue of ads, thresholds for
epidemics, . . .
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Markov Chain Monte Carlo

Why Take Integrals Anyway?
Monte Carlo Converges Rapidly

Bayes’s Rule and Integrals

Bayes’s rule:

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)
∫

p(y|x′)p(x′)dx′

Seems like we need to know the integral

p(y) =
∫

p(y|x′)p(x′)dx′
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Why Take Integrals Anyway?
Monte Carlo Converges Rapidly

Monte Carlo can be very accurate

Central limit theorem:

1

n

n
∑

i=1

g(xi)

p(xi)
 N







∫

g(x)dx,
σ2

g/p

n







Monte Carlo approximation to the integral is unbiased
RMS error ∝ n−1/2

∴ Just keep taking Monte Carlo draws, and the error gets as small as
you like, even if g or x are very complicated
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Rejection Method
Importance Sampling

Generating from p is easy if it’s a standard distribution or we have a
nice, invertible CDF (quantile method)
What can we do if all we’ve got is the probability density function p?
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Rejection Method
Importance Sampling

Suppose the pdf f is zero outside an interval [c,d], and ≤M on the
interval
Draw the rectangle [c,d]× [0,M], and the curve f
Area under the curve = 1
Area under curve and x≤ a is F(a)
How can we uniformly sample area under the curve?
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Rejection Method
Importance Sampling
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M <- 3.3; curve(dbeta(x,5,10),from=0,to=1,ylim=c(0,M))
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Markov Chain Monte Carlo

Rejection Method
Importance Sampling

We sample uniformly from the box, and take the points under the
curve

R∼Unif(c,d)
U ∼Unif(0,1)
If MU ≤ f (R) then X =R, otherwise try again
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r <- runif(300,min=0,max=1); u <- runif(300,min=0,max=1)
below <- which(M*u <= dbeta(r,5,10))
points(r[below],M*u[below],pch="+"); points(r[-below],M*u[-below],pch="-")
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Rejection Method
Importance Sampling

Histogram of r[below]

r[below]
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hist(r[below],xlim=c(0,1),probability=TRUE); curve(dbeta(x,5,10),add=TRUE)
points(r[below],M*u[below],pch="+"); points(r[-below],M*u[-below],pch="-")
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Rejection Method
Importance Sampling

If f doesn’t go to zero outside [c,d], try to find another density ρ
where

ρ also has unlimited support
f (a)≤Mρ(a) everywhere
we can generate from ρ (say by quantiles)

Then R∼ ρ, and accept when MUρ(R)≤ f (R)
(Uniformly distributed on the area under ρ)
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Markov Chain Monte Carlo

Rejection Method
Importance Sampling

Need to make multiple “proposals” R for each X
e.g., generated 300 for figure, only accepted 78
Important for efficiency to keep this ratio small
Ideally: keep the proposal distribution close to the target
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Rejection Method
Importance Sampling

Importance Sampling

∫

f (x)p(x)dx=
∫

f (x)
p(x)

q(x)
q(x)dx

∴ draw X1,X2, . . .Xn IID from q and

1

n

n
∑

i=1

f (xi)
p(xi)

q(xi)
≈
∫

f (x)p(x)dx

p(x)/q(x) = importance weights (ideally close to 1)
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Importance Sampling
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Metropolis Algorithm
Metropolis and Bayes
Gibbs Sampler

How Do We Do Monte Carlo?

Lots of Monte Carlo needs us to sample from an ugly distribution p
Sometimes none of these tricks work well for p
Markov chain Monte Carlo, MCMC: build a Markov chain whose
invariant distribution is p
Run the chain, take its values
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Metropolis Algorithm
Metropolis and Bayes
Gibbs Sampler

The Metropolis Algorithm

We know p(x) = f (x)/c but we don’t know c
Suppose

p(x)q(y|x) = p(y)q(x|y)

then p would be invariant (“detailed balance”)

q(y|x)
q(x|y)

=
p(y)

p(x)
=

f (y)

f (x)

We don’t need to know c!
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Metropolis Algorithm
Metropolis and Bayes
Gibbs Sampler

Metropolis Algorithm (cont’d)

1 Set X1 however we like, t← 1
2 Proposal: Draw Zt from some r(·|Xt)
3 Draw Ut ∼Unif(0,1)
4 If Ut < f (Zt)/f (Xt), then Xt+1← Zt, else Xt+1←Xt
5 Increase t, go back to 2

Close to, but not quite, rejection method
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Metropolis Algorithm
Metropolis and Bayes
Gibbs Sampler

rmetropolis <- function(n,rinitial,rproposal,f) {
metrostep <- function(x) {

z <- rproposal(x)
u <- runif(1)
return(if(u < f(z)/f(x)) { z } else { x } )

}
return(rmarkov(n,rinitial,metrostep))

}

Typically, discard first k values (burn-in), then only use every mth

value (low correlation), or average blocks of length m
but see Geyer’s “One Long Run”, “Burn-In is Unnecessary”, and “On the Bogosity of MCMC

Diagnostics”
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Metropolis Algorithm
Metropolis and Bayes
Gibbs Sampler

Sampling from Bayes’s Rule

p(x|y)∝ p(y|x)p(x)

so we can use Metropolis to draw a sample from p(x|y) without
really knowing it!
Key to modern Bayesian statistics
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Metropolis Algorithm
Metropolis and Bayes
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Gibbs Sampling

If X has many dimensions s, even writing f (x)∝ p(x) can be hard
Could try to turn X1,X2, . . .Xs into a Markov chain but that might
not work
Might be able to get p(Xi|X1, . . .Xi−1,Xi+1,Xs) = p(Xi|X−i)
The Gibbs sampler:

1 Set X1,X2, . . .Xs somehow
2 Pick a random i
3 Update Xi by drawing from p(Xi|X−i)
4 Go back to (2)

The sampler is a Markov chain on X
The invariant distribution is p
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Metropolis Algorithm
Metropolis and Bayes
Gibbs Sampler

Summary

1 Monte Carlo is a stochastic way of evaluating integrals
Or expectation values or probabilities or. . .
Extra useful when the integrand is complicated or the space is
high-dimensional

2 Markov chain Monte Carlo approximates integrals as averages
over a Markov process with the right invariant distribution
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