Statistical Computing (36-350) Lecture 16: Simulation III: Monte Carlo

Cosma Shalizi

21 October 2013

- Monte Carlo approximation of integrals and expectations
- The rejection method and importance sampling
- Markov Chain Monte Carlo

READING: Handouts on the class webpage OPTIONAL READING: Geyer, "Practical Markov Chain Monte Carlo", *Statistical Science* 7 (1992): 473–483;

Why Take Integrals Anyway? Monte Carlo Converges Rapidly

Random Samples and Integrals

Law of large numbers: if X_1, X_2, \dots, X_n all IID with p.d.f. p,

$$\frac{1}{n}\sum_{i=1}^{n}f(X_{i}) \to \mathbb{E}_{p}[f(X)] = \int f(x)p(x)dx$$

The **Monte Carlo principle**: to find $\int g(x)dx$, draw from *p* and take the sample mean of f(x) = g(x)/p(x)

Why Take Integrals Anyway? Monte Carlo Converges Rapidly

Examples

Buffon's needle (homework!)

Why Take Integrals Anyway? Monte Carlo Converges Rapidly

Examples

Buffon's needle (homework!) Area of a complicated shape C: draw X uniformly from box around C, take average of $1_C(X)$

< ∃→

Why Take Integrals Anyway? Monte Carlo Converges Rapidly

Examples

Buffon's needle (homework!) Area of a complicated shape C: draw X uniformly from box around C, take average of $1_C(X)$ Any expectation value, variance, ...

Examples

Buffon's needle (homework!)

Area of a complicated shape C: draw X uniformly from box around C, take average of $1_C(X)$

Any expectation value, variance, ...

Anything your other classes teach you as integrals or expectations: significance levels, risk of portfolios, revenue of ads, thresholds for epidemics, ...

Why Take Integrals Anyway? Monte Carlo Converges Rapidly

Bayes's Rule and Integrals

Bayes's rule:

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)} = \frac{p(y|x)p(x)}{\int p(y|x')p(x')dx'}$$

Seems like we need to know the integral

$$p(y) = \int p(y|x')p(x')dx'$$

< ≣ >

Why Take Integrals Anyway? Monte Carlo Converges Rapidly

Monte Carlo can be very accurate

Central limit theorem:

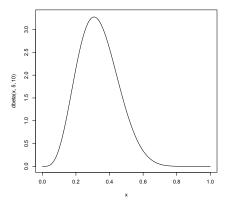
$$\frac{1}{n}\sum_{i=1}^{n}\frac{g(x_i)}{p(x_i)} \rightsquigarrow \mathcal{N}\left(\int g(x)dx, \frac{\sigma_{g/p}^2}{n}\right)$$

Monte Carlo approximation to the integral is unbiased RMS error $\propto n^{-1/2}$

:. Just keep taking Monte Carlo draws, and the error gets as small as you like, even if g or x are very complicated

Generating from *p* is easy if it's a standard distribution or we have a nice, invertible CDF (quantile method) What can we do if all we've got is the probability density function *p*?

- Suppose the pdf f is zero outside an interval [c,d], and $\leq M$ on the interval
- Draw the rectangle $[c,d] \times [0,M]$, and the curve f
- Area under the curve = 1
- Area under curve and $x \le a$ is F(a)
- How can we uniformly sample area under the curve?



M <- 3.3; curve(dbeta(x,5,10),from=0,to=1,ylim=c(0,M))</pre>

ヘロト 人間 トイヨト 人間 トー

æ

We sample uniformly from the *box*, and take the points under the curve

▶ < Ξ >

< < >> < </p>

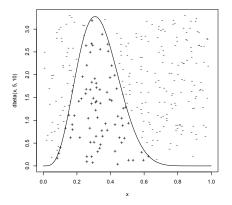
э.

We sample uniformly from the *box*, and take the points under the curve

 $R \sim \text{Unif}(c, d)$ $U \sim \text{Unif}(0, 1)$ If $MU \leq f(R)$ then X = R, otherwise try again

< ∃→

Rejection Method Importance Sampling

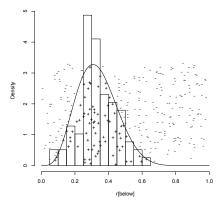


r <- runif(300,min=0,max=1); u <- runif(300,min=0,max=1) below <- which(M*u <= dbeta(r,5,10)) points(r[below],M*u[below],pch="+"); points(r[-below],M*u[-below],pch="-")

・ロト ・四ト ・ヨト ・ヨト

Rejection Method Importance Sampling

Histogram of r[below]



hist(r[below],xlim=c(0,1),probability=TRUE); curve(dbeta(x,5,10),add=TRUE)
points(r[below],M*u[below],pch="+"); points(r[-below],M*u[-below],pch="-")

ヘロト 人間 とくほ とくほとう

If f doesn't go to zero outside [c,d], try to find another density ρ where

- ρ also has unlimited support
- $f(a) \leq M \rho(a)$ everywhere
- we can generate from ρ (say by quantiles)

Then $R \sim \rho$, and accept when $MU\rho(R) \leq f(R)$ (Uniformly distributed on the area under ρ) Need to make multiple "proposals" *R* for each *X* e.g., generated 300 for figure, only accepted 78 Important for efficiency to keep this ratio small Ideally: keep the proposal distribution close to the target

Rejection Method Importance Sampling

Importance Sampling

$$\int f(x)p(x)dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx$$

<ロト <回 > < 回 > < 回 > 、

Rejection Method Importance Sampling

Importance Sampling

$$\int f(x)p(x)dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx$$

$$\therefore \text{ draw } X_1, X_2, \dots X_n \text{ IID from } q \text{ and}$$
$$\frac{1}{n}\sum_{i=1}^n f(x_i)\frac{p(x_i)}{q(x_i)} \approx \int f(x)p(x)dx$$

<ロト <回 > < 回 > < 回 > 、

Rejection Method Importance Sampling

Importance Sampling

$$\int f(x)p(x)dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx$$

$$\therefore \text{ draw } X_1, X_2, \dots X_n \text{ IID from } q \text{ and}$$

$$\frac{1}{n}\sum_{i=1}^n f(x_i)\frac{p(x_i)}{q(x_i)} \approx \int f(x)p(x)dx$$

p(x)/q(x) = importance weights (ideally close to 1)

・ロト ・回ト ・ヨト ・ヨト

Metropolis Algorithm Metropolis and Bayes Gibbs Sampler

How Do We Do Monte Carlo?

Lots of Monte Carlo needs us to sample from an ugly distribution pSometimes none of these tricks work well for p**Markov chain Monte Carlo, MCMC**: build a Markov chain whose invariant distribution is pRun the chain, take its values

Metropolis Algorithm Metropolis and Bayes Gibbs Sampler

The Metropolis Algorithm

We know p(x) = f(x)/c but we don't know *c* Suppose

p(x)q(y|x) = p(y)q(x|y)

then *p* would be invariant ("detailed balance")

$$\frac{q(y|x)}{q(x|y)} = \frac{p(y)}{p(x)} = \frac{f(y)}{f(x)}$$

We don't need to know *c*!

< ロ > < 同 > < 臣 > < 臣 > .

Metropolis Algorithm Metropolis and Bayes Gibbs Sampler

Metropolis Algorithm (cont'd)

- Set X_1 however we like, $t \leftarrow 1$
- **2** Proposal: Draw Z_t from some $r(\cdot|X_t)$
- Draw $U_t \sim \text{Unif}(0, 1)$
- If $U_t < f(Z_t)/f(X_t)$, then $X_{t+1} \leftarrow Z_t$, else $X_{t+1} \leftarrow X_t$
- Increase *t*, go back to 2

Close to, but not quite, rejection method

> < 프 > < 프 >

```
Monte Carlo
Rejection and Importance
Markov Chain Monte Carlo
Markov Chain Monte Carlo
```

```
rmetropolis <- function(n,rinitial,rproposal,f) {
   metrostep <- function(x) {
      z <- rproposal(x)
      u <- runif(1)
      return(if(u < f(z)/f(x)) { z } else { x } )
   }
   return(rmarkov(n,rinitial,metrostep))
}</pre>
```

Typically, discard first k values (**burn-in**), then only use every m^{th} value (low correlation), or average blocks of length m but see Geyer's "One Long Run", "Burn-In is Unnecessary", and "On the Bogosity of MCMC Diagnostics"

Metropolis Algorithm Metropolis and Bayes Gibbs Sampler

Sampling from Bayes's Rule

$p(x|y) \propto p(y|x)p(x)$

so we can use Metropolis to draw a sample from p(x|y) without really knowing it! Key to modern Bayesian statistics

イロト イボト イヨト イヨト

Gibbs Sampling

If X has many dimensions s, even writing $f(x) \propto p(x)$ can be hard Could try to turn X_1, X_2, \dots, X_s into a Markov chain but that might not work

Might be able to get $p(X_i|X_1,...,X_{i-1},X_{i+1},X_s) = p(X_i|X_{-i})$ The **Gibbs sampler**:

- Set $X_1, X_2, \ldots X_s$ somehow
- Pick a random i
- Update X_i by drawing from $p(X_i|X_{-i})$
- Go back to (2)

The sampler is a Markov chain on XThe invariant distribution is p

ト く ヨ ト く ヨ トー

Summary

- Monte Carlo is a stochastic way of evaluating integrals
 - Or expectation values or probabilities or...
 - Extra useful when the integrand is complicated or the space is high-dimensional
- Markov chain Monte Carlo approximates integrals as averages over a Markov process with the right invariant distribution