Statistical Computing (36-350) Lecture 18: Optimization II: Unconstrained, Deterministic Optimization

Cosma Shalizi

28 October 2013

- Approximation versus time
- Reminder: Newton's method
- Coordinate descent
- Derivative-free optimization: Nelder-Mead
- Optimizing statistical functionals

Given an objective function $f : \mathcal{D} \mapsto R$, find

$$\theta^* = \underset{\theta}{\operatorname{argmin}} f(\theta)$$

Approximation: How close can we get to θ^* , and/or $f(\theta^*)$? **Time complexity:** How many computer steps does that take? Typically, trade off approximation vs. time Generally:

- Small approximation \Rightarrow more time
- Smooth or specially structured $f \Rightarrow$ less time
- Larger $\mathcal{D} \Rightarrow$ more time
- Higher-dimensional $\mathcal{D} \Rightarrow$ more time

Newton's Method

Taylor expand $f(\theta^*)$ around a favorite point θ :

$$f(\theta^*) \approx f(\theta) + (\theta^* - \theta) \nabla f(\theta) + \frac{1}{2} (\theta^* - \theta)^T \mathbf{H}(\theta) (\theta^* - \theta)$$

H = Hessian, matrix of 2nd partial derivatives

Newton's Method

Taylor expand $f(\theta^*)$ around a favorite point θ :

$$f(\theta^*) \approx f(\theta) + (\theta^* - \theta) \nabla f(\theta) + \frac{1}{2} (\theta^* - \theta)^T \mathbf{H}(\theta) (\theta^* - \theta)$$

H = Hessian, matrix of 2nd partial derivatives Set gradient with respect to θ^* to zero and solve:

$$0 = \nabla f(\theta) + \mathbf{H}(\theta)(\theta^* - \theta)$$

$$\theta^* = \theta - (\mathbf{H}(\theta))^{-1} \nabla f(\theta)$$

Newton's Method

Taylor expand $f(\theta^*)$ around a favorite point θ :

$$f(\theta^*) \approx f(\theta) + (\theta^* - \theta) \nabla f(\theta) + \frac{1}{2} (\theta^* - \theta)^T \mathbf{H}(\theta) (\theta^* - \theta)$$

H = Hessian, matrix of 2nd partial derivatives Set gradient with respect to θ^* to zero and solve:

$$0 = \nabla f(\theta) + \mathbf{H}(\theta)(\theta^* - \theta)$$

$$\theta^* = \theta - (\mathbf{H}(\theta))^{-1} \nabla f(\theta)$$

Works *exactly* if f is quadratic so that H^{-1} exists, etc. If f isn't quadratic, keep pretending it is until we get close to θ^* , when it will be nearly true

Newton's Method: The Algorithm

- ${\small \bullet} {\small \ \, {\rm Start \ with \ guess \ for \ } \theta}$
- While ((not too tired) and (making adequate progress))
 - Find gradient $\nabla f(\theta)$ and Hessian $\mathbf{H}(\theta)$
 - **2** Set $\theta \leftarrow \theta \mathbf{H}(\theta)^{-1} \nabla f(\theta)$
- **③** Return final θ as approximation to θ^*

Like gradient descent, but with inverse Hessian giving the step-size "This is about how far you can go with that gradient"

Advantages and Disadvantages of Newton's Method

Pro:

- Step-sizes chosen adaptively through 2nd derivatives, much harder to get zig-zagging, over-shooting, etc.
- Only $O(\epsilon^{-2})$ steps to get within ϵ of optimum
- Only $O(\log \log \epsilon^{-1})$ for very nice functions

Cons:

- Hopeless if H doesn't exist or isn't invertible
- Need to take $O(p^2)$ second derivatives *plus p* first derivatives
- Need to solve $\mathbf{H}\theta_{\text{new}} = \mathbf{H}\theta_{\text{old}} \nabla f(\theta_{\text{old}})$ for θ_{new} inverting **H** is $O(p^3)$, but cleverness gives $O(p^2)$ for solving

Newton's method adjusts all coordinates at once Try this instead:

- Start with initial guess θ
- While ((not too tired) and (making adequate progress))
 - For $i \in (1:p)$
 - do 1D optimization over ith coordinate of θ, holding the others fixed
 - **2** Update i^{th} coordinate to this optimal value

9 Return final value of θ

Needs a good 1D optimizer, and can bog down for very tricky functions, but can also be extremely fast and simple

Nelder-Mead, a.k.a. the Simplex Method

Try to cage θ^* with a **simplex** of p + 1 points Order the trial points, $f(\theta_1) \le f(\theta_2) \dots \le f(\theta_{p+1})$ θ_{p+1} is the worst guess — try to improve it $\theta_0 = \frac{1}{n} \sum_{i=1}^n \theta_i$ = center of the not-worst

- **Reflection**: Try $x_0 (x_{p+1} x_0)$, across the center from x_{p+1}
 - if it's better than x_p but not than x_1 , replace the old x_{p+1} with it
 - Expansion: if the reflected point is the new best, try $x_0 2(x_{p+1} x_0)$; replace the old x_{p+1} with the better of the reflected and the expanded point
- Contraction: If the reflected point is worse that x_p , try $x_0 + \frac{x_{p+1}-x_0}{2}$; if the contracted value is better, replace x_{p+1} with it
- **Reduction**: If all else fails, $x_i \leftarrow \frac{x_1 + x_i}{2}$

メロトメ(型)トメヨトメヨト 三日

The Moves:

- Reflection: try the opposite of the worst point
- Expansion: if that really helps, try it some more
- Contraction: see if we overshot when trying the opposite
- Reduction: if all else fails, try being more like the best point

Pros:

- Each iteration \leq 4 values of f, plus sorting (at most $O(p \log p)$, usually much better)
- No derivatives used, can even work for dis-continuous fCon:
 - Can need many more iterations than gradient methods

Optimizing for statistics is funny: we know our objective function is noisy

Have \hat{f}_n (sample objective) but want to minimize f (population objective)

Why optimize \hat{f}_n to $\pm 10^{-6}$ when \hat{f} only matches f to ± 1 ? If \hat{f}_n is an average over data points, then (law of large numbers)

$$\mathbb{E}\left[\hat{f}_n(\theta)\right] = f(\theta)$$

and (central limit theorem)

$$\hat{f}_n(\theta) - f(\theta) = O(n^{-1/2})$$

Can use probability theory to analyze how closely the sample optimum matches the population optimum

Lightning Course in Core Statistical Theory

$$\begin{split} \hat{\theta}_n &= \arg \min_{\theta} \hat{f}_n(\theta) \\ \nabla \hat{f}_n(\hat{\theta}_n) &= 0 \\ &\approx \nabla \hat{f}_n(\theta^*) + \widehat{\mathbf{H}}_n(\theta^*)(\hat{\theta}_n - \theta^*) \\ \hat{\theta}_n &\approx \theta^* - \widehat{\mathbf{H}}_n^{-1}(\theta^*) \nabla \hat{f}_n(\theta^*) \end{split}$$

Opposite expansion to Newton's method

▶ < ≣ ▶</p>

$$\hat{\theta}_n \approx \theta^* - \hat{\mathbf{H}}_n^{-1}(\theta^*) \nabla \hat{f}_n(\theta^*)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$$\hat{\theta}_n \approx \theta^* - \hat{\mathbf{H}}_n^{-1}(\theta^*) \nabla \hat{f}_n(\theta^*)$$

When does $\hat{\mathbf{H}}_n^{-1}(\theta^*) \nabla \hat{f}_n(\theta^*) \rightarrow 0$?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$$\hat{\theta}_n \approx \theta^* - \hat{\mathbf{H}}_n^{-1}(\theta^*) \nabla \hat{f}_n(\theta^*)$$

When does $\hat{\mathbf{H}}_n^{-1}(\theta^*) \nabla \hat{f}_n(\theta^*) \rightarrow 0$?

$$\begin{split} &\widehat{\mathbf{H}}_n(\theta^*) \quad \rightarrow \quad \mathbf{H}(\theta^*) \, (\text{by LLN}) \\ &\nabla \widehat{f}_n(\theta^*) - \nabla f(\theta^*) \quad = \quad O(n^{-1/2}) \, (\text{by CLT}) \end{split}$$

but $\nabla f(\theta^*) = 0$

ヘロト 人間 とくほ とくほとう

2

$$\hat{\theta}_n \approx \theta^* - \hat{\mathbf{H}}_n^{-1}(\theta^*) \nabla \hat{f}_n(\theta^*)$$

When does $\hat{\mathbf{H}}_n^{-1}(\theta^*) \nabla \hat{f}_n(\theta^*) \rightarrow 0$?

$$\begin{array}{lll} \widehat{\mathbf{H}}_n(\theta^*) & \rightarrow & \mathbf{H}(\theta^*) \, (\mathrm{by} \, \mathrm{LLN}) \\ \nabla \widehat{f}_n(\theta^*) - \nabla f(\theta^*) & = & O(n^{-1/2}) \, (\mathrm{by} \, \mathrm{CLT}) \end{array}$$

but $\nabla f(\theta^*) = 0$

$$\therefore \nabla \hat{f}_n(\theta^*) = O(n^{-1/2})$$

Var $\left[\nabla \hat{f}_n(\theta^*)\right] \rightarrow n^{-1} \mathbf{K}(\theta^*)$ (CLT again)

ヘロト 人間 とくほ とくほとう

2

How much noise is there in $\hat{\theta}_n$?

$$\begin{aligned} \operatorname{Var}\left[\hat{\theta}_{n}\right] &= \operatorname{Var}\left[\hat{\theta}_{n} - \theta^{*}\right] \\ &= \operatorname{Var}\left[\widehat{\mathbf{H}}_{n}^{-1}(\theta^{*})\nabla\widehat{f}_{n}(\theta^{*})\right] \\ &= \widehat{\mathbf{H}}_{n}^{-1}(\theta^{*})\operatorname{Var}\left[\nabla\widehat{f}_{n}(\theta^{*})\right]\widehat{\mathbf{H}}_{n}^{-1}(\theta^{*}) \\ &\to n^{-1}\mathbf{H}^{-1}(\theta^{*})\mathbf{K}(\theta^{*})\mathbf{H}^{-1}(\theta^{*}) \\ &= O(pn^{-1}) \end{aligned}$$

▶ < ≣ ▶ .

2

How much noise is there in $f(\hat{\theta}_n)$?

$$\begin{split} f(\hat{\theta}_n) - f(\theta^*) &\approx \frac{1}{2} (\hat{\theta}_n - \theta^*)^T \mathbf{H}(\theta^*) (\hat{\theta}_n - \theta^*) \\ \mathrm{Var} \left[f(\hat{\theta}_n) - f(\theta^*) \right] &\approx \operatorname{tr} \left(\mathbf{H}(\theta^*) \mathrm{Var} \left[\hat{\theta}_n - \theta^* \right] \mathbf{H}(\theta^*) \mathrm{Var} \left[\hat{\theta}_n - \theta^* \right] \right) \\ &\to n^{-2} \operatorname{tr} \left(\mathbf{K}(\theta^*) \mathbf{H}^{-1}(\theta^*) \mathbf{K}(\theta^*) \mathbf{H}^{-1}(\theta^*) \right) \\ &= O(pn^{-2}) \end{split}$$

If everything works out ideally (maximum likelihood, correct model) $\mathbf{K} = \mathbf{H}$, and

$$\begin{split} \hat{\theta}_n &\approx \theta^* - \widehat{\mathbf{H}}_n^{-1}(\theta^*) \nabla \widehat{f}_n(\theta^*) \\ &\operatorname{Var} \left[\hat{\theta}_n \right] &\approx n^{-1} \mathbf{H}^{-1}(\theta^*) \approx n^{-1} \mathbf{H}(\hat{\theta}_n) \\ &\operatorname{Var} \left[f(\hat{\theta}_n) - f(\theta^*) \right] &\approx n^{-2} p \end{split}$$

If $\mathbf{K} \neq \mathbf{H}$, do the algebra and deal with more noise

: Little point to optimizing \hat{f}_n much more precisely than $\pm \sqrt{p/n^2}$

- Trade-offs: complexity of iteration vs. number of iterations vs. precision of approximation
- One is worth optimization is worth doing
- For smooth problems, we can calculate uncertainty from the Hessian and the gradient