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Approximation versus time

e Reminder: Newton’s method

e Coordinate descent

e Derivative-free optimization: Nelder-Mead

e Optimizing statistical functionals
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How Good vs. How Fast?

Given an objective function f : 2 — R, find

0" = argminf(0)
g

Approximation: How close can we get to 8%, and/or f(6*)?
Time complexity: How many computer steps does that take?
Typically, trade off approximation vs. time

Generally:

e Small approximation => more time
e Smooth or specially structured f = less time
o Larger 9 = more time

o Higher-dimensional 2 => more time
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Newton’s Method

Taylor expand f(6*) around a favorite point :

1
FO)=f(O)+ (0" = ONf(O)+ 50" ~ 0)TH(O)(0" — )

H = Hessian, matrix of 2nd partial derivatives
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Newton’s Method

Taylor expand f(6*) around a favorite point :

1
FO)=f(O)+ (0" = ONf(O)+ 50" ~ 0)TH(O)(0" — )

H = Hessian, matrix of 2nd partial derivatives

Set gradient with respect to 8" to zero and solve:

0 = Vf(O)+HO) 6 -06)
g = 6—(H®O)'VF(O)
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Newton’s Method

Taylor expand f(6*) around a favorite point :

1
FO)=f(O)+ (0" = ONf(O)+ 50" ~ 0)TH(O)(0" — )

H = Hessian, matrix of 2nd partial derivatives

Set gradient with respect to 8" to zero and solve:

0 = Vf(O)+HO) 6 -06)
g = 6—(H®O)'VF(O)

Works exactly if f is quadratic

so that H™! exists, etc.

If f isn’t quadratic, keep pretending it is until we get close to 6%,
when it will be nearly true
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Newton’s Method: The Algorithm

@ Start with guess for ¢

@ While ((not too tired) and (making adequate progress))

0 Find gradient Vf(6) and Hessian H(6)
@ Set 0« 0 —H(0)'Vf(0)

@ Return final 8 as approximation to *

Like gradient descent, but with inverse Hessian giving the step-size

“This is about how far you can go with that gradient”
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Advantages and Disadvantages of Newton’s Method

Pro:

e Step-sizes chosen adaptively through 2nd derivatives, much
harder to get zig-zagging, over-shooting, etc.

o Only O(¢~2) steps to get within € of optimum
o Only O(logloge™!) for very nice functions
Cons:
e Hopeless if H doesn’t exist or isn’t invertible
o Need to take O(p?) second derivatives plus p first derivatives
o Need to solve HO, ., =HO, ;4 — V/(0,4) for 0.,

inverting H is O(p®), but cleverness gives O(p?) for solving
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Coordinate Descent

Newton’s method adjusts all coordinates at once
Try this instead:
@ Start with initial guess 0
@ While ((not too tired) and (making adequate progress))
o Forie(1:p)

@ do 1D optimization over #*
fixed

@ Update i*h coordinate to this optimal value
@ Return final value of

Needs a good 1D optimizer, and can bog down for very tricky
functions, but can also be extremely fast and simple

" coordinate of 6, holding the others
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Nelder-Mead, a.k.a. the Simplex Method

Try to cage 0" with a simplex of p+ 1 points
Order the trial points, f(6;) <f(6,)... <f(0,.1)
(917 +1 1s the worst guess — try to improve it

0,= l :’ . 6, = center of the not-worst

o Reflection: Try x, — ()41 —Xo), across the center from Xpy1

o if it’s better than x, but not than x, replace the old x, | with it
o Expansion: if the reflected point is the new best, try
X — 2(x, — xo); replace the old x,, | with the better of the

reflected and the expanded point

o Contraction: If the reflected point is worse that x,, try

—Xg . .
xp+ 2 >—; if the contracted value is better, replace X, g With it

o Reduction: If all else fails, x; < xlT-'_x‘
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Making Sense of Nedler-Mead

The Moves:

e Reflection: try the opposite of the worst point

o Expansion: if that really helps, try it some more

e Contraction: see if we overshot when trying the opposite

e Reduction: if all else fails, try being more like the best point
Pros:

o Each iteration <4 values of f, plus sorting (at most O(plogp),
usually much better)

e No derivatives used, can even work for dis-continuous f
Con:

e Can need many more iterations than gradient methods
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Optimizing Statistical Functionals

Optimizing for statistics is funny: we know our objective function is
noisy

Have ]}n (sample objective) but want to minimize f (population
objective)

Why optimize ]?n to £107° when ]} only matches f to +1?

If fn is an average over data points, then (law of large numbers)

E[/,(6)] =£(6)

and (central limit theorem)

1(0)—f(6)=O(n™"/?)

Can use probability theory to analyze how closely the sample
optimum matches the population optimum
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Lightning Course in Core Statistical Theory

6 = arg;nin]}n(@)

V6, = 0

V(6 +H, (6760, 6)
0, ~ 0 —H;'(6")\V},(0)

X

Opposite expansion to Newton’s method
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A ~ A

0, ~ 0" —H 1(6")\VF,(6")

n

When does ﬁ;l(ﬁ*)an(ﬁ*) —0?
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A ~ A

6,~0" —H_'(0")Vf,(0")
When does ﬁ;l(ﬁ*)an(ﬁ*) —0?

H,(0") — H(") (by LLN)
Vi,(69) = V(") = O (by CLT)

but Vf(&*) =0
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6, ~ 6" —H_\(6")V,(6")
When does ﬁ;l(ﬁ*)V]A‘n(ﬁ*) — 0?

H,(0") — H(") (by LLN)
Vi,(69) = V(") = O (by CLT)

but Vf(&*) =0

~VEO) = O(n~'?)
Var [V/,(6)] — #7'K(6) (CLT again)




How much noise 1s there in én?
Var [én} = Var |:(9 -0 ]
= Var[ <<9*>Vf< 9]
= *)Var [ :| g")
- _1H (@K@ H' (0 )
= O@pn™")
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How much noise is there in /- ((9;1)>

fO)~16) ~ 50,0V EENG,~6)
Var [f(én) - f(e*)] ~ ot <H(<9*)Var [én - 9*] H(6")Var [én - 9*] )
— 2 77or (KO H(0")K(G)H'(6"))
= O@pn?)

X




What You Need to Remember

If everything works out ideally (maximum likelihood, correct
model) K = H, and

0, ~ 6 —H (0 )V,(6)
Var[én] ~ nH (6"~ 'H(G,)
Var [f0,)=F0)] ~ 7

If K # H, do the algebra and deal with more noise
. Little point to optimizing f, much more precisely than £4/p/n*
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@ Trade-offs: complexity of iteration vs. number of iterations vs.
precision of approximation

@ Noise limits how much optimization is worth doing

@ For smooth problems, we can calculate uncertainty from the
Hessian and the gradient
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