
Statistical Computing (36-350)
Lecture 18: Optimization II: Unconstrained, Deterministic

Optimization

Cosma Shalizi

28 October 2013

36-350 Lecture 18



Agenda

Approximation versus time
Reminder: Newton’s method
Coordinate descent
Derivative-free optimization: Nelder-Mead
Optimizing statistical functionals

36-350 Lecture 18



How Good vs. How Fast?

Given an objective function f :D 7→R, find

θ∗ = argmin
θ

f (θ)

Approximation: How close can we get to θ∗, and/or f (θ∗)?
Time complexity: How many computer steps does that take?
Typically, trade off approximation vs. time
Generally:

Small approximation⇒more time
Smooth or specially structured f ⇒ less time
Larger D ⇒more time
Higher-dimensional D ⇒more time

36-350 Lecture 18



Newton’s Method

Taylor expand f (θ∗) around a favorite point θ:

f (θ∗)≈ f (θ)+ (θ∗−θ)∇f (θ)+
1

2
(θ∗−θ)T H(θ)(θ∗−θ)

H=Hessian, matrix of 2nd partial derivatives

Set gradient with respect to θ∗ to zero and solve:

0 = ∇f (θ)+H(θ)(θ∗−θ)
θ∗ = θ− (H(θ))−1∇f (θ)

Works exactly if f is quadratic
so that H−1 exists, etc.

If f isn’t quadratic, keep pretending it is until we get close to θ∗,
when it will be nearly true

36-350 Lecture 18



Newton’s Method

Taylor expand f (θ∗) around a favorite point θ:

f (θ∗)≈ f (θ)+ (θ∗−θ)∇f (θ)+
1

2
(θ∗−θ)T H(θ)(θ∗−θ)

H=Hessian, matrix of 2nd partial derivatives

Set gradient with respect to θ∗ to zero and solve:

0 = ∇f (θ)+H(θ)(θ∗−θ)
θ∗ = θ− (H(θ))−1∇f (θ)

Works exactly if f is quadratic
so that H−1 exists, etc.

If f isn’t quadratic, keep pretending it is until we get close to θ∗,
when it will be nearly true

36-350 Lecture 18



Newton’s Method

Taylor expand f (θ∗) around a favorite point θ:

f (θ∗)≈ f (θ)+ (θ∗−θ)∇f (θ)+
1

2
(θ∗−θ)T H(θ)(θ∗−θ)

H=Hessian, matrix of 2nd partial derivatives

Set gradient with respect to θ∗ to zero and solve:

0 = ∇f (θ)+H(θ)(θ∗−θ)
θ∗ = θ− (H(θ))−1∇f (θ)

Works exactly if f is quadratic
so that H−1 exists, etc.

If f isn’t quadratic, keep pretending it is until we get close to θ∗,
when it will be nearly true

36-350 Lecture 18



Newton’s Method: The Algorithm

1 Start with guess for θ
2 While ((not too tired) and (making adequate progress))

1 Find gradient∇f (θ) and Hessian H(θ)
2 Set θ← θ−H(θ)−1∇f (θ)

3 Return final θ as approximation to θ∗

Like gradient descent, but with inverse Hessian giving the step-size
“This is about how far you can go with that gradient”

36-350 Lecture 18



Advantages and Disadvantages of Newton’s Method

Pro:
Step-sizes chosen adaptively through 2nd derivatives, much
harder to get zig-zagging, over-shooting, etc.
Only O(ε−2) steps to get within ε of optimum
Only O(log logε−1) for very nice functions

Cons:
Hopeless if H doesn’t exist or isn’t invertible
Need to take O(p2) second derivatives plus p first derivatives
Need to solve Hθnew =Hθold−∇f (θold) for θnew
inverting H is O(p3), but cleverness gives O(p2) for solving

36-350 Lecture 18



Coordinate Descent

Newton’s method adjusts all coordinates at once
Try this instead:

1 Start with initial guess θ
2 While ((not too tired) and (making adequate progress))

For i ∈ (1 : p)
1 do 1D optimization over ith coordinate of θ, holding the others

fixed
2 Update ith coordinate to this optimal value

3 Return final value of θ
Needs a good 1D optimizer, and can bog down for very tricky
functions, but can also be extremely fast and simple

36-350 Lecture 18



Nelder-Mead, a.k.a. the Simplex Method

Try to cage θ∗ with a simplex of p+ 1 points
Order the trial points, f (θ1)≤ f (θ2) . . .≤ f (θp+1)
θp+1 is the worst guess — try to improve it
θ0 =

1
n

∑n
i=1θi = center of the not-worst

Reflection: Try x0− (xp+1− x0), across the center from xp+1

if it’s better than xp but not than x1, replace the old xp+1 with it
Expansion: if the reflected point is the new best, try
x0− 2(xp+1− x0); replace the old xp+1 with the better of the
reflected and the expanded point

Contraction: If the reflected point is worse that xp, try

x0+
xp+1−x0

2 ; if the contracted value is better, replace xp+1 with it

Reduction: If all else fails, xi←
x1+xi

2

36-350 Lecture 18



Making Sense of Nedler-Mead

The Moves:
Reflection: try the opposite of the worst point
Expansion: if that really helps, try it some more
Contraction: see if we overshot when trying the opposite
Reduction: if all else fails, try being more like the best point

Pros:
Each iteration ≤ 4 values of f , plus sorting (at most O(p logp),
usually much better)
No derivatives used, can even work for dis-continuous f

Con:
Can need many more iterations than gradient methods

36-350 Lecture 18



Optimizing Statistical Functionals

Optimizing for statistics is funny: we know our objective function is
noisy
Have f̂n (sample objective) but want to minimize f (population
objective)
Why optimize f̂n to ±10−6 when f̂ only matches f to ±1?
If f̂n is an average over data points, then (law of large numbers)

E
�

f̂n(θ)
�

= f (θ)

and (central limit theorem)

f̂n(θ)− f (θ) =O(n−1/2)

Can use probability theory to analyze how closely the sample
optimum matches the population optimum

36-350 Lecture 18



Lightning Course in Core Statistical Theory

θ̂n = argmin
θ

f̂n(θ)

∇f̂n(θ̂n) = 0

≈ ∇f̂n(θ
∗)+ bHn(θ

∗)(θ̂n−θ
∗)

θ̂n ≈ θ∗− bH−1
n (θ

∗)∇f̂n(θ
∗)

Opposite expansion to Newton’s method

36-350 Lecture 18



θ̂n ≈ θ
∗− bH−1

n (θ
∗)∇f̂n(θ

∗)

When does bH−1
n (θ

∗)∇f̂n(θ
∗)→ 0?

bHn(θ
∗) → H(θ∗) (by LLN)

∇f̂n(θ
∗)−∇f (θ∗) = O(n−1/2) (by CLT)

but∇f (θ∗) = 0

∴∇f̂n(θ
∗) = O(n−1/2)

Var
�

∇f̂n(θ
∗)
�

→ n−1K(θ∗) (CLT again)

36-350 Lecture 18



θ̂n ≈ θ
∗− bH−1

n (θ
∗)∇f̂n(θ

∗)

When does bH−1
n (θ

∗)∇f̂n(θ
∗)→ 0?

bHn(θ
∗) → H(θ∗) (by LLN)

∇f̂n(θ
∗)−∇f (θ∗) = O(n−1/2) (by CLT)

but∇f (θ∗) = 0

∴∇f̂n(θ
∗) = O(n−1/2)

Var
�

∇f̂n(θ
∗)
�

→ n−1K(θ∗) (CLT again)

36-350 Lecture 18



θ̂n ≈ θ
∗− bH−1

n (θ
∗)∇f̂n(θ

∗)

When does bH−1
n (θ

∗)∇f̂n(θ
∗)→ 0?

bHn(θ
∗) → H(θ∗) (by LLN)

∇f̂n(θ
∗)−∇f (θ∗) = O(n−1/2) (by CLT)

but∇f (θ∗) = 0

∴∇f̂n(θ
∗) = O(n−1/2)

Var
�

∇f̂n(θ
∗)
�

→ n−1K(θ∗) (CLT again)

36-350 Lecture 18



θ̂n ≈ θ
∗− bH−1

n (θ
∗)∇f̂n(θ

∗)

When does bH−1
n (θ

∗)∇f̂n(θ
∗)→ 0?

bHn(θ
∗) → H(θ∗) (by LLN)

∇f̂n(θ
∗)−∇f (θ∗) = O(n−1/2) (by CLT)

but∇f (θ∗) = 0

∴∇f̂n(θ
∗) = O(n−1/2)

Var
�

∇f̂n(θ
∗)
�

→ n−1K(θ∗) (CLT again)

36-350 Lecture 18



How much noise is there in θ̂n?

Var
h

θ̂n

i

= Var
h

θ̂n−θ
∗
i

= Var
�

bH−1
n (θ

∗)∇f̂n(θ
∗)
�

= bH−1
n (θ

∗)Var
�

∇f̂n(θ
∗)
�

bH−1
n (θ

∗)

→ n−1H−1(θ∗)K(θ∗)H−1(θ∗)
= O(pn−1)

36-350 Lecture 18



How much noise is there in f (θ̂n)?

f (θ̂n)− f (θ∗) ≈
1

2
(θ̂n−θ

∗)T H(θ∗)(θ̂n−θ
∗)

Var
h

f (θ̂n)− f (θ∗)
i

≈ tr
�

H(θ∗)Var
h

θ̂n−θ
∗
i

H(θ∗)Var
h

θ̂n−θ
∗
i�

→ n−2 tr
�

K(θ∗)H−1(θ∗)K(θ∗)H−1(θ∗)
�

= O(pn−2)

36-350 Lecture 18



What You Need to Remember

If everything works out ideally (maximum likelihood, correct
model) K=H, and

θ̂n ≈ θ∗− bH−1
n (θ

∗)∇f̂n(θ
∗)

Var
h

θ̂n

i

≈ n−1H−1(θ∗)≈ n−1H(θ̂n)

Var
h

f (θ̂n)− f (θ∗)
i

≈ n−2p

If K 6=H, do the algebra and deal with more noise

∴ Little point to optimizing f̂n much more precisely than ±
Æ

p/n2

36-350 Lecture 18



Summary

1 Trade-offs: complexity of iteration vs. number of iterations vs.
precision of approximation

2 Noise limits how much optimization is worth doing
3 For smooth problems, we can calculate uncertainty from the

Hessian and the gradient

36-350 Lecture 18


