
Lecture 22: Importing Data from the Web

36-350, Fall 2013

11 November 2013

Sometimes data is online in a nice, machine-readable format. Then it is very
easy to import it into R. We have been doing this since the first assignment,
without any fuss:

rain <- read.table("http://www.stats. uwo.ca/faculty/braun/data/rnf6080.dat")

All the commands like read.table, read.csv, etc., can take a URL just as
easily as the name of a file on the local system.

Some webpages combine machine-readable formats with other parts which
are intended to be read by human beings. (See, for instance, the example with
the ANSS earthquake catalog in the handout on regular expressions.) Sometimes
this can be dealt with simply, through arguments like skip to read.table and
its kin. In slightly more complex cases, one needs to use some very basic text
filtering, possibly involving regular expressions. (See, again, the example with
the earthquake catalog.) Alternatively, especially if the file is not too large, save
it, open it in a text editor, trim out everything which isn’t formatted for the
machine, and have R read the edited file.

Much of the time, however, the information one wants on the web is not
in machine-readable format; rather it is intended for human consumption. For
instance, in 2003 Valdis Krebs and collaborators published a famous study of
networks of political books on Amazon, where two books are linked if they tend
to be purchased by the same people1. Amazon displays this information for
each book; to avoid needless controversy, I will show it for our textbook rather
than a political tract (Figure 1).

This way of displaying the information is designed to be very appealing to
human beings, but it’s not convenient for the computer, especially if one wants
to deal with dozens, or even thousands, of books. The craft of web scraping
is about taking such relatively unstructured information, and turning it into
rigidly formatted data.

1See Krebs’s page at http://www.orgnet.com/divided.html, and references therein.

1

http://www.orgnet.com/divided.html

Figure 1: Part of Amazon’s “also bought” information for Matloff’s The Art of
R Programming, as of November 2012.

2

<div class="shoveler" id="view_to_purchaseShvl">
<div class="shoveler-heading">

<h2>Customers Who Viewed This Item Also Bought</h2>
</div>

<div class="shoveler-pagination" style="display:none">

Page of
 (<a href="#" onclick="return false;"
class="start-over-link">Start over)

</div>

<div class="shoveler-button-wrapper" id="view_to_purchaseButtonWrapper">
<a class="back-button" href="#Back" style="display:none"

onclick="return false;"><span class="swSprite
s_shvlBack">Back

<div class="shoveler-content">
<ul tabindex="-1">

<div class="new-faceout" id="view_to_purchase_0596809158">

<a href="http://www.amazon.com/Cookbook-OReilly-Cookbooks-Paul-Teetor/dp/0596809158/ref=pd_vtp_b_1"
class="sim-img-title" > <div class="product-image">

<img
src="http://ecx.images-amazon.com/images/I/51ODN7aoMqL._SL500_PIsitb-sticker-arrow-big,TopRight,35,-73_OU01_SS100_.jpg"
width="100" alt="" height="100" border="0" />

</div>
R Cookbook (O'Reilly Cookbooks)

<div class="byline">
› Paul Teetor
</div>
<div class="rating-price">4.4 out of
5 stars (19)</div>

<div class="binding-platform">
Paperback

</div>
<div class="pricetext">

$32.68
</div>

</div>

Figure 2: The beginning of the HTML source of the part of the Amazon page
which displays the also-bought information. (A large number of blank lines have
been deleted to save space, and I’ve added broken up some, but not all, of the
very long lines.)

3

1 How to Scrape
Figure out what exactly you want to learn from the page This typically
involved making an initially-vague idea about the desired information more
precise.

To build a network of affiliated books, we want to know which books are
likely to be bought by the same people. Amazon actually provides four kinds
of information like this: “frequently bought together” items, based on what gets
purchased together (i.e., included in the same order); “customers who viewed
this item also bought” (shown above); “customers also bought items by” (which
gives authors rather than specific books); and “what other items do customers
buy after viewing this item”. We will focus on the second one.

Understand how that information is organized on the webpage Specif-
ically:

1. Find the information on one webpage.

2. What cues, as a human reader, did you use to find the desired information?

3. Where does that information appear in the source text of the webpage?

In the case of Matloff’s book, scanning down the source text of the Amazon
page finds a section which begins like Figure 2. This encodes a lot of information
about each title, much of it related to catching the viewer’s eye (and wallet) and
of no essential concern to us, but now that we know about regular expressions,
we can extract just what we need from it.

However, at the end of this section there is the following bit of HTML2:

<div id="view_to_purchaseSimsData" class="sims-data" style="display:none"
data-baseAsin="1593273843" data-pageId="1593273843sr_1_1"
data-popunder="true" data-reftag="pd_vtp_b"
data-wdg="book_display_on_website"
data-widgetName="view_to_purchase">0596809158,1119962846,1439810184,
0387938362,0123814855,059680170X,1935182390,144931208X,0387790535,0387981403,
0470510242,1439831769,111816430X,1446200469,159420411X,0470944889,1449311520,
1441998896,0596802358,1441926127,1449319793,0321629302,0123748569,1590282418,
0596153937,0538497815,1441977864,1599947250,0596529325,141297514X,0970601972,
041587291X,1461406846,1584884509,0387747303,0387781889,1420070576,0615684378,
1587788802,0387781706,1600490069,0387922970,0878933913,0470414359,193518220X,
0615653634,1449303714,1441930086,0942154916,0521762936,052168689X,0123850819,
0387848576,0387886974,1592576346,1617290181,0521518148,1449388345,1420068725,
0470475358,0123814790,1449309038,0199230234,0321356683,1441915753,0470650931,
1849513066,0321776402,0062731025,1441996494,0486653552,1400069289,0387759581,
0970601980,0470141158,0262017180,0805816569,0387402721,0374275637,1449319262,
0387759689,158488388X</div>

2It is actually all one line; I’ve added the linebreaks for printing.

4

This forbidding-looking block just gives the product ID numbers (ISBNs) of
all the associated books. Realizing that that’s what these are requires knowing
that Amazon tracks books by ISBNs, and that these are ISBNs; but if we
were uncertain, we might notice that the first numeral-string in this block,
0596809158, is also the one which appears repeatedly in the display of the first
associated book (Figure 2). As usual, though, the more one knows about the
actual subject-matter, whether it be the book trade or bird tracking3, the more
sense one can make of the data.

At this stage, it may be worthwhile to see if one can figure out, from the
source of the webpage, how to directly access the data files which are being
processed to produce the humanly-readable page. (Often, but not always, this
will be a database in the strict sense, as we’ll come to in a few lectures.) Amazon,
understandably enough, doesn’t provide very ready access, or even cues to such
access, but sites which are less worried about commercial rivals, or just less
cautious, may provide more clues.

Build a function to automate your extraction of the information from
one webpage Generally, this means using regular expressions based on what
you’ve discovered about the organization of the page’s source.

It helps to build up the regular expression gradually:

1. Use paste to combine sub-expressions;

2. Use parenthesized capture groups to extract particulars

3. Test your ability to extract parts of the desired information first, rather
than everything at once (say, one related book)

You should use your humanly-extracted information from particular pages as
test cases, and sore your results in a data frame.

Several of our design principles are coming together here. One is modular
design: if there are multiple pieces of information we want from the page, figure
out how to get them in stages, rather than having to come up with a single
huge procedure all at once. Another is testing: because you have studied this
web page already, you know what answer a correctly-working procedure should
give when applied to the source, and can use that to guide your coding. Finally,
storing in a data frame takes us all the way back to the idea that our data
structures should keep related values together.

For the book-network example, the natural data frame would contain pairs
of associated books, representing the information that “people who bought ISBN
X also bought ISBN Y ”. (Note that this is not necessarily a symmetric rela-
tionship.)

3For a spectacular example of how failing to understand the measurement process can lead
even excellent scientists astray, see Edwards et al. (2007).

5

Figure out all the relevant pages, and apply your function to them

1. Come up with a set of starting points. (E.g., books of known political
valence.)

2. Follow, or generate, links to relevant pages. (One can build a URL for
Amazon’s page on a given book from its ISBN.) Determine whether or not
to follow a link at all. (Amazon sells many other things besides books,
and while there might be a political valence to, say, packs of incandescent
light bulbs, it would also be reasonable to ignore such things.)

3. Determine whether those pages are of the same format, in which case they
should be processed as before, or if they have a different format and need
different handling. (All Amazon book pages are of basically the same
format, but there are, for instance, review and discussion pages, which
might be relevant for other projects.)

4. Determine when to stop. (A fixed number of pages, a fixed number of
links, when memory is full, when a website is completely surveyed...)

Improve as you go Like everything else in programming, Web scraping is
iterative. As you go along, you may discover cases you did not expect, where
your initial extraction function does not work properly. But bugs become tests:
record the problematic page, and write a test case for it, modifying your extrac-
tion function until it passes all your tests.

1.1 Data Storage and Reproducibility
Websites change, move, and disappear. If it’s important to be able to reproduce
your results on the same data later, it can be very worthwhile to store all the
webpages you work with, and have your code work with the stored copies. This
may however lead to legal issues regarding copyright, etc., which are outside my
competence to advise you on.

2 Exercises
1. Write code which will extract the ISBNs of all the books associated with

Matloff’s book. Hint: try extracting the solid block of ISBNs first, and
then get all of the individual ISBNs out of the block.

2. How can you generate an Amazon webpage for a book if you only know
its ISBN and not its title?

3. How can you extract the title of a book from its Amazon webpage?

4. How can you tell, from an Amazon webpage, if the product being sold
there is a book?

6

5. Put the pieces together: how would you build a network of political book
affiliations?

References
Edwards, Andrew M., Richard A. Phillips, Nicholas W. Watkins, Mervyn P.

Freeman, Eugene J. Murphy, Vsevolod Afanasyev, Sergey V. Buldyrev,
M. G. E. da Luz, E. P. Raposo, H. Eugene Stanley and Gandhimo-
han M. Viswanathan (2007). “Revisiting Lévy flight search patterns
of wandering albatrosses, bumblebees and deer.” Nature, 449: 1044–
1048. URL http://polymer.bu.edu/hes/articles/epwfmabdrsgv07.pdf.
doi:10.1038/nature06199.

7

http://polymer.bu.edu/hes/articles/epwfmabdrsgv07.pdf
http://dx.doi.org/10.1038/nature06199

	How to Scrape
	Data Storage and Reproducibility

	Exercises

